Мышечное сокращение и расслабление. Строение мышцы и механизм мышечного сокращения

Подвижность является характерным свойством всех форм жизни. Направленное движение имеет место при расхождении хромосом в процессе клеточного деления, активном транспорте молекул, пе­ремещении рибосом в ходе белкового синтеза, сокращении и рас­слаблении мышц. Мышечное сокращение – наиболее совершенная форма биологической подвижности. В основе любого движения, в том числе и мышечного, лежат общие молекулярные механизмы.

У человека различают несколько видов мышечной ткани. По­перечно-полосатая мышечная ткань составляет мышцы скелета (скелетные мышцы, которые мы можем сокращать произвольно). Гладкая мышечная ткань входит в состав мышц внутренних орга­нов: желудочно-кишечного тракта, бронхов, мочевыводящих путей, кровеносных сосудов. Эти мышцы сокращаются непроиз­вольно, независимо от нашего сознания.

В данной лекции мы рассмотрим строение и процессы сокращения и расслабления скелетных мышц, поскольку именно они пред­ставляют наибольший интерес для биохимии спорта.

Механизм мышечного сокращения до настоящего времени раскрыт не полностью.

Достоверно известно следующее.

1. Источником энергии для мышечного сокращения являются молекулы АТФ.

2. Гидролиз АТФ катализируется при мышечном сокращении миозином, обладающим ферментативной активностью.

3. Пусковым механизмом мышечного сокращения является повышение концентрации ионов кальция в саркоплазме миоцитов, вызываемое нервным двигательным импульсом.

4. Во время мышечного сокращения между тонкими и толстыми нитями миофибрилл возникают поперечные мостики или спайки.

5. Во время мышечного сокращения происходит скольжение тонких нитей вдоль толстых, что приводит к укорочению миофибрилл и всего мышечного волокна в целом.

Гипотез объясняющих механизм мышечного сокращения много, но наиболее обоснованной является так называемая гипотеза (теория) «скользящих нитей» или «гребная гипотеза».

В покоящейся мышце тонкие и толстые нити находятся в разъединенном состоянии.

Под воздействием нервного импульса ионы кальция выходят из цистерн саркоплазматической сети и присоединяются к белку тонких нитей – тропонину. Этот белок меняет свою конфигурацию и меняет конфигурацию актина. В результате образуется поперечный мостик между актином тонких нитей и миозином толстых нитей. При этом повышается АТФазная активность миозина. Миозин расщепляет АТФ и за счет выделившейся при этом энергии миозиновая головка подобно шарниру или веслу лодки поворачивается, что приводит к скольжению мышечных нитей навстречу друг другу.

Совершив поворот, мостики между нитями разрываются. АТФазная активность миозина резко снижается, прекращается гидролиз АТФ. Однако при дальнейшем поступлении нервного импульса поперечные мостики вновь образуются, так как процесс, описанный выше, повторяется вновь.

В каждом цикле сокращения расходуется 1 молекула АТФ.

В основе мышечного сокращения лежат два процесса:

    спиральное скручивание сократительных белков;

    циклически повторяющееся образование и диссоциация ком­плекса между цепью миозина и актином.

Мышечное сокращение инициируется приходом потенциала действия на концевую пластинку двигательного нерва, где выделяется нейрогормон ацетилхолин, функцией которого яв­ляется передача импульсов. Сначала ацетилхолин взаимодействует с ацетилхолиновыми рецепторами, что приводит к распростране­нию потенциала действия вдоль сарколеммы. Все это вызывает увеличение проницаемости сарколеммы для катионов Na + , которые устремляются внутрь мышечного волокна, нейтрализуя отрицатель­ный заряд на внутренней поверхности сарколеммы. С сарколеммой связаны поперечные трубочки саркоплазматического ретикулума, по которым распространяется волна возбуждения. От трубочек волна возбуждения передается мембранам пузырьков и цистерн, которые оплетают миофибриллы на участках, где происходит взаи­модействие актиновых и миозиновых нитей. При передаче сигнала на цистерны саркоплазматического ретикулума, последние начина­ют освобождать находящийся в них Са 2+ . Высвобожденный Са 2+ связывается с Тн-С, что вызывает конформационные сдвиги, передающиеся на тропомиозин и далее на актин. Актин как бы освобождается из комплекса с компонентами тонких филаментов, в котором он находился. Далее актин взаимодействует с мио­зином, и результатом такого взаимодействия является образова­ние спайки, что делает возможным движение тонких нитей вдоль толстых.

Генерация силы (укорочение) обусловлена характером взаи­модействия между миозином и актином. На миозиновом стержне имеется подвижный шарнир, в области которого происходит по­ворот при связывании глобулярной головки миозина с опреде­ленным участком актина. Именно такие повороты, происходящие одновременно в многочисленных участках взаимодействия миозина и актина, являются причиной втягивания актиновых филаментов (тонких нитей) в Н-зону. Здесь они контактируют (при макси­мальном укорочении) или даже перекрываются друг с другом, как это показано на рисунке.

в

Рисунок. Механизм сокращения: а – состояние покоя; б – умеренное сокращение; в – максимальное сокращение

Энергию для этого процесса поставляет гидролиз АТФ. Когда АТФ присоединяется к головке молекулы миозина, где локализо­ван активный центр миозиновой АТФазы, связи между тонкой и толстой нитями не образуется. Появившийся катион кальция нейтрализует отрицательный заряд АТФ, способствуя сближению с активным центром миозиновой АТФазы. В результате происхо­дит фосфорилирование миозина, т. е. миозин заряжается энергией, которая используется для образования спайки с актином и для продвижения тонкой нити. После того как тонкая нить про­двинется на один «шаг», АДФ и фосфорная кислота отщепляются от актомиозинового комплекса. Затем к миозиновой головке присоединяется новая молекула АТФ, и весь процесс повторяет­ся со следующей головкой молекулы миозина.

Затрата АТФ необходима и для расслабления мышц. После прекращения действия двигательного импульса Са 2+ переходит в цистерны саркоплазматического ретикулума. Тн-С теряет свя­занный с ним кальций, следствием этого являются конформаци-онные сдвиги в комплексе тропонин-тропомиозин, и Тн-I снова закрывает активные центры актина, делая их неспособными взаимодействовать с миозином. Концентрация Са 2+ в области со­кратительных белков становится ниже пороговой, и мышечные волокна теряют способность образовывать актомиозин.

В этих условиях эластические силы стромы, деформированной в момент сокращения, берут верх, и мышца расслабляется. При этом тонкие нити извлекаются из пространства между толстыми нитями диска А, зона Н и диск I приобретают первоначальную длину, линии Z отдаляются друг от друга на прежнее расстояние. Мышца становится тоньше и длиннее.

Скорость гидролиза АТФ при мышечной работе огромна: до 10 мк моль на 1 г мышцы за 1 мин. Общие запасы АТФ невелики, поэтому для обеспечения нормальной работы мышц АТФ должна восстанавливаться с той же скоростью, с какой она расходуется.

Расслабление мышцы происходит после прекращения поступления длительного нервного импульса. При этом проницаемость стенки цистерн саркоплазматической сети уменьшается, и ионы кальция под действием кальциевого насоса, используя энергию АТФ, уходят в цистерны. Удаление ионов кальция в цистерны ретикулума после прекращения двигательного импульса требует значительных энерготрат. Так как удаление ионов кальция происходит в сторону более высокой концетрации, т.е. против осмотического градиента, то на удаление каждого иона кальция затрачивается две молекулы АТФ. Концентрация ионов кальция в саркоплазме быстро снижается до исходного уровня. Белки вновь приобретают конформацию характерную для состояния покоя.

В основе мышечного сокращения лежит перемещение нитей актина относительно нитей миозина. Нити актина двигаются, как по туннелю, между миозиновыми фибриллами, за счет образования связей с миозином. В результате этого сарко- мер укорачивается (гипотеза «скользящих нитей» А. Хаксли) (рис. 7.29). При этом длина 1-дисков уменьшается, А-диски сохраняют свой размер.

Скольжение актиновых и миозиновых нитей друг относительно друга возможно только в присутствии ионов Са 2+ и АТФ, которая образуется при расщеплении гликогена, глюкозы и жирных кислот. Мышцы характеризуются активным обменом веществ. К ним подходит большое количество кровеносных и лимфатических сосудов, а также нервов. Последние образуют с мышечными волокнами синаптические контакты.

Всю цепь событий при мышечном сокращении можно представить следующим образом: в нервно-мышечном синапсе под влиянием приходящих из ЦНС но нервному волокну импульсов выделяется медиатор ацетилхолин , деполяризующий мембрану мышечного волокна. Возникающий при этом импульс распространяется по мембране волокна и Т-трубочкам и передается на мембрану саркоплазматического ретикулума, из которого в саркоплазму выходит кальций. Ионы кальция способствуют образованию комплекса акто- миозина и расщеплению АТФ; освобождающаяся при этом энергия обеспечивает скольжение тонких актиновых нитей вдоль миозиновых.

Рис. 7.29.

Изменение взаиморасположения миофибрилл при расслаблении (б) и сокращении (в) мышечного волокна

Расслабление мышцы связано с обратным поступлением Са 2+ в саркоплазматический ретикулум, что происходит при участии активных механизмов, связанных с работой ионных насосов. Если концентрация ионов кальция в саркоплазме снижается и они перекачиваются в эндоплазматическую сеть, то сокращение мышечного волокна прекращается.

Скелетная мускулатура человека состоит из мышечных волокон нескольких типов с различными структурно-функциональными характеристиками. Выделяют четыре основных типа мышечных волокон: медленные фазические волокна окислительного типа, быстрые фазические волокна окислительного типа, быстрые фазические окислительные волокна с гликолитическим типом окисления и тонические волокна.

Медленные фазические мышечные волокна окислительного типа содержат большое количество белка миоглобина, связывающего 0 2 . Этот белок аналогичен гемоглобину эритроцитов и придает мышечным волокнам темно-красную окраску. Мышцы, состоящие преимущественно из этих волокон, участвуют в поддержании позы человека. Утомление в них развивается очень медленно, а восстанавливаются функции очень быстро.

Мышцы, состоящие преимущественно из быстрых фази- ческих волокон окислительного типа , выполняют быстрые сокрашения без заметного утомления. Это связано с наличием в волокнах большого количества митохондрий и хорошей способностью синтезировать АТФ. Основное назначение таких волокон - выполнение быстрых, энергичных движений.

Тонические волокна сокращаются и расслабляются медленно, так как активность АТФ в них низка. Такие волокна входят в состав некоторых мышц глаза.

Большинство скелетных мышц человека состоит из мышечных волокон различных типов с преобладанием одного из них в зависимости от функций, которые выполняет та или иная мышца.

Основное физиологическое свойство мышц - сократимость - проявляется в способности мышцы к укорачиванию или развитию напряжения. Различают два типа мышечных сокращений - изотонические и изометрические. При изотоническом сокращении волокна мышцы укорачиваются, но напряжение остается постоянным. При изометрическом - мышца укоротиться не может, длина мышечных волокон остается неизменной, так как оба се конца неподвижно закреплены, но напряжение по мере их сокращения возрастает.

По отношению к целому организму применяется иная классификация типов сокращения: изометрическим называют сокращение, при котором длина мышцы не меняется, концентрическим - при котором мышца укорачивается, эксцентрическим - удлиняется (например, при медленном опускании груза). Для естественных движений обычно характерны все три типа сокращения мышц.

Функциональной единицей скелетной мускулатуры считается не отдельное мышечное волокно, а нейромоторная , или двигательная единица , которая включает несколько мышечных волокон, иннервируемых мотонейроном спинного мозга (рис. 7.30, 7.31). В ответ на импульсы, приходящие от мотонейрона, сокращаются все мышечные волокна, входящие в нейромоторную единицу.

Число мышечных волокон, составляющих двигательную единицу, скорость их сокращения и устойчивость к утомлению неодинаковы. В зависимости от их свойств двигательные единицы подразделяют на быстрые (фазные) } медленные (тониРис. 7.30. Двигательные единицы

ческиё) и переходные. Двигательные единицы каждой мышцы неодинаковы. Мышцы, обеспечивающие точные и быстрые движения (например, мышцы пальцев руки), состоят в основном из нескольких сотен или тысяч быстрых двигательных единиц. В большинстве мышц смешанного типа первыми активизируются медленные двигательные единицы, развивающие


Рис. 7.31

а,6 - нервно-мышечный синапс; в - электронная сканирующая

микроскопия небольшую силу сокращения, а при увеличении возбуждения в сокращение вовлекаются мышечные волокна, развивающие большую силу. Активация быстрых нсйромогорных единиц обеспечивает точную двигательную реакцию.

В естественных условиях к мышце из ЦНС поступают не одиночные импульсы, а серии импульсов, на которые она реагирует не одиночным, а длительным (тетаническим ) сокращением. Оно обусловлено тем, что каждый следующий импульс приходит в момент, когда еще не закончилась предыдущая волна сокращения. Последняя, суммируясь с предыдущей, продлевает сокращение мышцы. Если каждая новая волна сокращения возникает в момент, когда мышца уже начала расслабляться под влиянием предшествующего раздражения, возникает зубчатый тетанус. При меньшем интервале между раздражениями, когда каждая новая волна сокращения возникает до начала мышечного расслабления, образуется сплошной, или гладкий , тетанус. Отдельные волокна мышцы при ее естественной стимуляции с нерва отвечают на каждый импульс одиночным сокращением. Слитный тетанус получается за счет суммации сокращений отдельных мышечных волокон. Обычно мышечные волокна одной мышцы сокращаются не одновременно, так как импульсы от различных мотонейронов ЦНС также приходят к ним не одновременно. Это способствует образованию и поддержанию слитного тетаничес- кого сокращения мышцы.

Сокращаясь, мышца выполняет работу. Работа мышц зависит от силы их сокращения, а сила сокращения одной и той же мышцы - от количества нейромоторных единиц, участвующих в нем. Чем их больше, тем сокращение интенсивнее. Сила сокращения также зависит от частоты раздражения. До известного предела увеличение частоты стимуляции сопровождается возрастанием силы мышечного сокращения. Это связано с тем, что с увеличением частоты раздражения в реакцию включается все большее количество мышечных волокон. Максимальное напряжение, которое может развить мышца, определяется числом образующих ее волокон: чем оно больше, тем больше сила мышц. В связи с этим перистые мышцы, состоящие из множества волокон, отличаются большей силой.

Проявление силы мышцы зависит и от особенностей ее прикрепления к костям. Мышцы с большей площадью прикрепления или опоры, имеют большие возможности для проявления силы. Важно также и место приложения силы мышц. Кости вместе с прикрепляющимися к ним мышцами являются рычагами, поэтому чем ближе к точке приложения силы тяжести или чем дальше от точки опоры рычага и ближе к точке приложения силы тяжести прикрепляется мышца, тем большую силу она может развить (рис. 7.32).

Зависимость мышечной силы от таких факторов отчетливо проявляется в деятельности мышц верхней и нижней конечностей. Верхняя конечность предназначена для выполнения разнообразных точных и быстрых движений. Функция нижних конечностей требует большой силы их мышц. Этим функциональным задачам соответствует и характер прикрепления соответствующих мышц. Так, дельтовидная мышца, расположенная в области плечевого сустава, имеет небольшую поверхность опоры и прикрепляется на плечевой кости вблизи от места опоры рычага. У мышц нижних конечностей площадь опоры велика и точка приложения силы находится далеко от точки опоры. У ягодичной мышцы площадь опоры в 23 раза больше, чем у дельтовидной, а площадь прикрепления - больше в 4,5 раза.

Между силой мышцы и величиной ее укорочения нет прямо пропорциональной зависимости. Максимальное укорочение мышцы, а следовательно, и интенсивность сокращения, вызываемого этим укорочением движения, в том или ином суставе зависит от длины мышечных волокон. Она наибольшая в мышцах с параллельным расположением волокон, в то время как большей силой обладают перистые мышцы. Первоначально растянутая мышца при сокращении укорачивается на большую величину.

Работа мышцы при сокращении равна произведению массы груза на поднятую высоту. Отсюда следует, что максимальная работа, выполняемая при одиночном сокращении мышцы, зависит от ее силы (чем больше сила, тем больший груз может быть поднят) и степени укорочения мышцы. В про-


Рис. 732.

а - рычаг равновесия; б - рычаг скорости. Треугольник - точка опоры; темные стрелки показывают направление сил мышечной тяги; пунктирные стрелки - направление силы тяжести; пунктирная стрелка - движение цессе естественной деятельности человека величина работы, выполняемой той или иной мышцей, в значительной степени зависит от се способности длительно находиться в сокращенном состоянии (выносливость мышц). Различают выносливость к статическим и динамическим усилиям. Выносливость к статическим усилиям определяется временем, в течение которого удерживается величина заданного усилия. У разных мышц она неодинакова. Наименьшей выносливостью характеризуется трехглавая мышца плеча (1 мин - при усилии, равном 50% максимального), наибольшей - икроножная мышца (7 мин).

Выносливость к длительной работе зависит не только от величины поднимаемого груза, но и от темпа работы. Работа бывает наибольшей при какой-то средней величине груза и частоте движений. Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которой работа станет максимальной, а утомление будет развиваться постепенно.

Работа мышц - необходимое условие их сокращения. Длительная бездеятельность ведет к атрофии мышц и потере работоспособности. Умеренная систематическая работа мышц способствует увеличению их объема, возрастанию силы и работоспособности, что важно для физического развития всего организма.

При длительной динамической или статической работе наступает утомление мышц. Утомлением называют временное понижение работоспособности клетки, органа или целостного организма, наступающее в результате работы и исчезающее после отдыха. В естественных условиях утомление связано, прежде всего, с изменениями, происходящими в нервной системе, в частности с нарушением проведения возбуждения в межнейрональных и нервно-мышечных синаптических контактах. Скорость наступления утомления зависит от состояния нервной системы, ритма, в котором производится работа, и от величины нагрузки. После отдыха работоспособность восстанавливается. И. М. Сеченов впервые (в 1903 г.) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза происходит быстрее, если в период отдыха производить работу другой рукой или ногой. Такой отдых был назван активным.

Чередование умственного и физического труда, динамические паузы до и во время занятий способствуют повышению работоспособности детей и взрослых. Чем меньше ребенок, тем быстрее у него развивается утомление. В грудном возрасте утомление наступает через 1,5-2 часа обычного бодрствования. Дети утомляются и при неподвижности или длительном ограничении движений.

Мышцы человека даже в покое находятся в несколько сокращенном состоянии. Длительное удерживание напряжения называют мышечным тонусом . Во время сна или при наркозе тонус мышц снижается и вследствие этого тело расслабляется. Тонические сокращения мышц не приводят к развитию утомления. Полное исчезновение тонуса мышц наблюдается только после смерти. Сохранение тонуса обусловлено постоянным поступлением к мышце следующих друг за другом с большими интервалами нервных импульсов от двигательных нейронов Ц11С. Активность этих нейронов поддерживается импульсами, поступающими из вышележащих отделов ЦНС и от рецепторов мышц - мышечных веретен.

Тонус мышц играет важную роль в осуществлении координации движений. У новорожденных и грудных детей преобладает тонус мышц-сгибателей, обусловленный повышенной возбудимостью красного ядра среднего мозга. По мере функционального созревания пирамидной системы мозга и нейронов коры больших полушарий тонус мышц у детей снижается. Это четко проявляется во втором полугодии жизни ребенка и является необходимым условием для развития ходьбы. К трем - пяти годам устанавливается равновесие тонуса мышц-аитагонистов.

Процессы мышечной работы представляют собой многоуровневый комплекс физиологических и биохимических функций, жизненно важных для полноценной работы человеческого организма. Внешне подобные процессы можно наблюдать на примерах произвольных движений при ходьбе, беге, изменении мимики и т. д. Однако они охватывают гораздо больший спектр функций, в числе которых также значится работа дыхательного аппарата, органов пищеварения и выделительной системы. В каждом случае механизм мышечных сокращений подкрепляется работой миллионов клеток, в которой задействуются химические элементы и физические волокна.

Структурная организация мышцы

Мышцы формируются множеством волокон ткани, которые имеют узлы крепления к костям скелета. Они располагаются параллельно и в процессе мышечной работы взаимодействуют между собой. Именно волокна при поступлении импульсов обеспечивают механизм мышечного сокращения. Кратко структуру мышцы можно представить как систему, состоящую из молекул саркомер и миофибрилла. Важно понимать, что каждое мышечное волокно образуется множеством субъединиц миофибрилл, располагающихся продольно по отношению друг к другу. Теперь стоит отдельно рассмотреть саркомеры и филаменты. Поскольку они играют важную роль в двигательных процессах.

Саркомеры и филаменты

Саркомеры представляют собой сегменты волокон, которые отделяются так называемыми Z-пластинами, содержащими бета-актинин. От каждой пластины отходят актиновые филаменты, а промежутки заполняются толстыми миозиновыми аналогами. Актиновые элементы, в свою очередь, похожи на ниточки бус, закрученных в двойную спираль. В этой структуре каждая бусинка является молекулой актина, а в участках с углублениями в спирали находятся молекулы тропонина. Каждая из этих структурных единиц формирует механизм сокращения и расслабления мышечного волокна, связываясь друг с другом. Ключевую роль в возбуждении волокон играет клеточная мембрана. В ней заключены поперечные трубочки-инвагинации, которые активизируют функцию саркоплазматического ретикулума - это и будет возбуждающий эффект для мышечной ткани.

Двигательная единица

Теперь стоит отойти от углубленной структуры мышцы и рассмотреть двигательную единицу в общей конфигурации скелетной мышцы. Это будет совокупность мышечных волокон, иннервируемых отростками мотонейрона. Работа ткани мышцы независимо от характера действия будет обеспечиваться волокнами, включенными в состав одной двигательной единицы. То есть при возбуждении мотонейрона срабатывает механизм мышечных сокращений в рамках одного комплекса с иннервируемыми отростками. Такое разделение на мотонейроны позволяет целенаправленно задействовать конкретные мышцы, не возбуждая без надобности соседние двигательные единицы. По сути, вся мышечная группа одного организма делится на сегменты мотонейронов, которые могут объединяться в работе над сокращением или расслаблением, а могут действовать разнопланово или поочередно. Главное, что они независимы друг от друга и работают только с сигналами своей группы волокон.

Молекулярные механизмы мышечной работы

В соответствии с молекулярной концепцией о скольжении нитей, работа мышечной группы и, в частности, ее сокращение реализуется в ходе скользящего действия миозинов и актинов. Реализуется сложный механизм взаимодействия этих нитей, в котором можно выделить несколько процессов:

  • Центральная часть миозиновой нити соединяются со связками актинов.
  • Достигнутый контакт актина с миозином способствует конформационному перемещению молекул последнего. Головки вступают в фазу активности и разворачиваются. Таким образом осуществляются молекулярные механизмы мышечного сокращения на фоне перестройки нитей активных элементов по отношению друг к другу.
  • Затем происходит взаимное расхождение миозинов и актинов с последующим восстановлением головной части последних.

Весь цикл выполняется несколько раз, в результате чего происходит смещение вышеупомянутых нитей, а Z-сегменты саркомеров сближаются и укорачиваются.

Физиологические свойства работы мышц

Среди основных физиологических свойств мышечной работы выделяют сократимость и возбудимость. Эти качества, в свою очередь, обуславливаются проводимостью волокон, пластичностью и свойством автоматии. Что касается проводимости, то она обеспечивает распространение процесса возбудимости между миоцитами по нексусам - это специальные электропроводящие контуры, отвечающие за проведение импульса сокращения мышцы. Однако после сокращения или расслабления тоже совершается работа волокон.

За их спокойное состояние в определенной форме отвечает пластичность, определяющая сохранение постоянного тонуса, в котором на текущий момент находится механизм мышечного сокращения. Физиология пластичности может проявляться как в виде сохранения укороченного состояния волокон, так и в их растянутом виде. Интересно и свойство автоматии. Она определяет способность мышц входить в рабочую фазу без подключения нервной системы. То есть миоциты самостоятельно вырабатывают ритмически повторяющиеся импульсы для тех или иных действий волокон.

Биохимические механизмы мышечной работы

В работе мышц участвует целая группа химических элементов, среди которых кальций и сократительные белки наподобие тропонина и тропомиозина. На базе этого энергетического обеспечения и выполняются рассмотренные выше физиологические процессы. Источником же этих элементов выступает аденозинтрифосфорная кислота (АТФ), а также ее гидролиз. При этом запас АТФ в мышце способен обеспечивать сокращение мышцы лишь в течение доли секунды. Несмотря на это, волокна могут отвечать на нервные импульсы в постоянном режиме.

Дело в том, что биохимические механизмы мышечного сокращения и расслабления с поддержкой АТФ связаны с процессом выработки резервного запаса макроэрга в виде креатинфосфата. Объем этого резерва в несколько раз превышает запас АТФ и в то же время способствует его генерации. Также помимо АТФ энергетическим источником для мышцы может выступать гликоген. К слову, на мышечные волокна приходится около 75% всего запаса данного вещества в организме.

Сопряжение возбудительных и сократительных процессов

В спокойном состоянии нити волокон не взаимодействуют друг с другом посредством скольжения, так как центры связок закрываются молекулами тропомиозина. Возбуждение может иметь место только после электромеханического сопряжения. Данный процесс также делится на несколько этапов:

  • При активации нейромышечного синапса на мембране миофибриллы формируется так называемый постсинаптический потенциал, накапливающий энергию для действия.
  • Возбуждающий импульс благодаря системе трубок расходится по мембране и активизирует ретикулум. Этот процесс в итоге способствует снятию барьеров с каналов мембраны, по которым выпускаются ионы, связывающиеся с тропонином.
  • Белок тропонин, в свою очередь, открывает центры связок актина, после чего становится возможным механизм мышечных сокращений, но для его начала также потребуется соответствующий импульс.
  • Использование открывшихся центров начнется в момент, когда к ним присоединятся головки миозина по описанной выше модели.

Полный цикл этих операций происходит в среднем за 15 мс. Период от начальной точки возбуждения волокон до полного сокращения называется латентным.

Процесс расслабления скелетной мышцы

При расслаблении мышц происходит обратный перенос ионов Са++ с подключением ретикулума и кальциевых каналов. В процессе выхода ионов из цитоплазмы количество центров связки сокращается, в результате чего происходит разъединение актиновых и миозиновых филаментов. Иными словами, механизмы мышечного сокращения и расслабления подключают те же функциональные элементы, но оперируют ими разными способами. После расслабления может наступать процесс контрактуры, при котором отмечается устойчивое сокращение мышечных волокон. Это состояние может сохраняться до момента, пока не наступит очередное действие раздражающего импульса. Бывает и контрактура краткого действия, предпосылками для которой становится тетаническое сокращение в условиях скопления ионов с большими объемами.

Фазы сокращения

Когда мускулатура приводится в действие раздражающим импульсом сверхпороговой силы, происходит одиночное сокращение, в котором можно выделить 3 фазы:

  • Уже упомянутый выше период сокращения латентного типа, в процессе которого волокна накапливают энергию для совершения последующих действий. В это время проходят процессы электромеханического сопряжения и открываются центры связок. На данной стадии подготавливается механизм сокращения мышечного волокна, который активизируется после распространения соответствующего импульса.
  • Фаза укорочения - длится 50 мс в среднем.
  • Фаза расслабления - также длится примерно 50 мс.

Режимы мышечного сокращения

Работа при одиночном сокращении была рассмотрена как пример «чистой» механики мышечных волокон. Однако в естественных условиях такая работа не совершается, поскольку волокна находятся в постоянном отклике на сигналы двигательных нервов. Другое дело, что в зависимости от характера этого отклика может происходить работа в следующих режимах:

  • Сокращения возникают при пониженной частоте импульсов. Если электрический импульс распространяется после завершения расслабления, то следует серия одиночных актов сокращения.
  • Высокая частота импульсных сигналов может совпадать с расслабляющей фазой предшествующего цикла. В этом случае амплитуда, в которой работал механизм сокращения мышечной ткани, будет суммироваться, что обеспечит длительное сокращение с неполными актами расслабления.
  • В условиях повышения частоты импульсов новые сигналы будут действовать в периоды укорочения, что спровоцирует длительное сокращение, которое не будет прерываться расслаблениями.

Оптимум и пессимум частоты

Амплитуды сокращений определяются частотой импульсов, которые раздражают мышечные волокна. В этой системе взаимодействия сигналов и откликов можно выделить оптимум и пессимум частоты. Первым обозначается частота, которая в момент действия будет накладываться на фазу повышенной возбудимости. В таком режиме может активизироваться механизм сокращения мышечного волокна с большой амплитудой. В свою очередь, пессимум определяет более высокую частоту, импульс которой приходится на фазу рефрактерности. Соответственно, в этом случае амплитуда уменьшается.

Виды работы скелетной мышцы

Мышечные волокна могут осуществлять работу динамически, статически и динамически-уступающе. Стандартная динамическая работа является преодолевающей - то есть мышца в момент сокращения перемещает объекты или его составные части в пространстве. Статическое действие мышцы в некотором роде избавлено от нагрузок, поскольку в этом случае не предусматривается изменение его состояния. Динамически-уступающий механизм мышечного сокращения скелетной мышцы срабатывает, когда волокна функционируют в условиях растяжения. Потребность в параллельном растяжении также может быть обусловлена тем, что работа волокон предполагает выполнение операций со сторонними телами.

В заключение

Процессы организации мышечного действия подключают самые разные функциональные элементы и системы. В работе задействуется сложный комплекс участников, каждый из которых выполняет свою задачу. Можно видеть, как в процессе активации механизма мышечных сокращений срабатывают и косвенные функциональные блоки. Например, это касается процессов генерации энергетического потенциала для совершения работы или системы блокировки центров связок, через которые происходит соединение миозинов и актинов.

Основная же нагрузка приходится непосредственно на волокна, которые выполняют те или иные действия по командам двигательных единиц. Причем характер выполнения определенной работы может быть разным. На него будут влиять параметры направляемого импульса, а также текущее состояние мышцы.

Которые различаются клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Скелетные мышцы

Скелетная мускулатура является активной частью опорно-двигательного аппарата. В результате сократительной деятельности поперечно-полосатых мышц осуществляются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга;
  • поддержание позы.

Кроме того, один из результатов мышечного сокращения — выработка тепла.

У человека, как и у всех позвоночных, волокна скелетных мышц обладают четырьмя важнейшими свойствами:

  • возбудимость — способность отвечать на раздражитель изменениями ионной проницаемости и мембранного потенциала;
  • проводимость - способность к проведению потенциала действия вдоль всего волокна;
  • сократимость — способность сокращаться или изменять напряжение при возбуждении;
  • эластичность - способность развивать напряжение при растягивании.

В естественных условиях возбуждение и сокращение мышц вызываются нервными импульсами, поступающими к мышечным волокнам из нервных центров. Чтобы вызвать возбуждение в эксперименте, применяют электрическую стимуляцию.

Непосредственное раздражение самой мышцы называется прямым раздражением; раздражение двигательного нерва, ведущее к сокращению иннервированной этим нервом мышцы (возбуждение нейромоторных единиц), — непрямым раздражением. Ввиду того что возбудимость мышечной ткани ниже, чем нервной, приложение электродов раздражающего тока непосредственно к мышце еще не обеспечивает прямого раздражения: ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов и возбуждает их, что ведет к сокращению мышц.

Типы сокращения

Изотонический режим — сокращение, при котором мышца укорачивается без формирования напряжения. Такое сокращение возможно при пересечении или разрыве сухожилия или в эксперименте на изолированной (удаленной из организма) мышце.

Изометрический режим — сокращение, при котором напряжение мышцы возрастает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим - сокращение, при котором длина мышцы изменяется по мере увеличения ее напряжения. Такой режим сокращений наблюдается при осуществлении трудовой деятельности человека. Если напряжение мышцы возрастает при ее укорочении, то такое сокращение называют концентрическим, а в случае увеличении напряжения мышцы при ее удлинении (например, при медленном опускании груза) - эксцентрическим сокращением.

Виды мышечных сокращений

Выделяют два вида мышечных сокращений: одиночное и тетаническое.

При раздражении мышцы одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют следующие три фазы:

  • фаза латентного периода — начинается от начала действия раздражителя и до начала укорочения;
  • фаза сокращения (фаза укорочения) — от начала сокращения до максимального значения;
  • фаза расслабления — от максимального сокращения до начальной длины.

Одиночное мышечное сокращение наблюдается при поступлении к мышце короткой серии нервных импульсов моторных нейронов. Его можно вызвать воздействием на мышцу очень коротким (около 1 мс) электрическим стимулом. Сокращение мышцы начинается через временной промежуток до 10 мс от начала воздействия раздражителя, который и называют латентным периодом (рис. 1). Затем развиваются укорочение (длительность около 30-50 мс) и расслабление (50-60 мс). На весь цикл одиночного мышечного сокращения затрачивается в среднем 0,1 с.

Длительность одиночного сокращения у разных мышц может сильно варьировать и зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления замедляется при развитии утомления мышцы. К быстрым мышцам, имеющим кратковременное одиночное сокращение, относятся наружные мышцы глазного яблока, век, среднего уха и др.

При сопоставлении динамики генерации потенциала действия на мембране мышечного волокна и его одиночного сокращения видно, что потенциал действия всегда возникает раньше и лишь затем начинает развиваться укорочение, которое продолжается и после окончания реполяризации мембраны. Вспомним, что длительность фазы деполяризации потенциала действия мышечного волокна составляет 3-5 мс. В течение этого промежутка времени мембрана волокна находится в состоянии абсолютной рефрактерности, за которой следует восстановление се возбудимости. Поскольку длительность укорочения составляет около 50 мс, то очевидно, что еще во время укорочения мембрана мышечного волокна должна восстанавливать возбудимость и будет способна отвечать на новое воздействие сокращением на фоне еще незавершенного. Следовательно, на фоне развивающегося сокращения в мышечных волокнах на их мембране можно вызвать новые циклы возбуждения и следующие за ними суммирующиеся сокращения. Такое суммирующееся сокращение получило название тетанического (тетанус). Его можно наблюдать в одиночном волокне и целой мышце. Однако механизм тетанического сокращения в естественных условиях в целой мышце имеет особенности.

Рис. 1. Временные соотношения одиночных циклов возбуждения и сокращения волокна скелетной мышцы: а — соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокращения: 1 — латентный период; 2 — укорочение; 3 — расслабление; б — соотношение потенциала действия, возбудимости и сокращения

Тетанусом называют сокращение мышцы, возникающее в результате суммирования сокращений ее моторных единиц, вызванных поступлением к ним множества нервных импульсов от моторных нейронов, иннервирующих данную мышцу. Суммирование усилий, развиваемых при сокращении волокон множества двигательных единиц, способствует увеличению силы тетанического сокращения мышцы и влияет на длительность сокращения.

Различают зубчатый и гладкий тетанус. Для наблюдения в эксперименте зубчатого тетануса мышцы ее стимулируют импульсами электрического тока с такой частотой, чтобы каждый последующий стимул наносился после фазы укорочения, но еще до окончания расслабления. Гладкое тетаническое сокращение развивается при более частых раздражениях, когда последующие воздействия наносятся во время развития укорочения мышцы. Например, если фаза укорочения мышцы составляет 50 мс, фаза расслабления — 60 мс, то для получения зубчатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого — с частотой не менее 20 Гц.

Для демонстрации различных видов тетануса обычно используют графическую регистрацию на кимографе сокращений изолированной икроножной мышцы лягушки. Пример такой кимограммы представлен на рис. 2.

Если сравнивать амплитуды и усилия, развиваемые при различных режимах сокращения мышцы, то они при одиночном сокращении минимальны, увеличиваются при зубчатом тетанусе и становятся максимальными при гладком тетаническом сокращении. Одной из причин такого возрастания амплитуды и силы сокращения является то, что увеличение частоты генерации ПД на мембране мышечных волокон сопровождается увеличением выхода и накоплением в саркоплазме мышечных волокон ионов Са 2+ , способствующего большей эффективности взаимодействия между сократительными белками.

Рис. 2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

При постепенном увеличении частоты раздражения нарастание силы и амплитуды сокращения мышцы идет лишь до определенного предела — оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, называют оптимальной. Дальнейшее увеличение частоты раздражения сопровождается уменьшением амплитуды и силы сокращения. Это явление называют пессимумом ответной реакции, а частоты раздражения, превышающие оптимальную величину — пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

В естественных условиях частота и режим посылки моторными нейронами нервных импульсов к мышце обеспечивают асинхронное вовлечение в процесс сокращения большего или меньшего (в зависимости от числа активных мотонейронов) количества двигательных единиц мышцы и суммацию их сокращений. Сокращение целостной мышцы в организме но своему характеру близко к гладкотеганическому.

Для характеристики функциональной активности мышц оценивают показатели их тонуса и сокращения. Тонусом мышцы называют состояние длительного непрерывного напряжения, вызванное попеременным асинхронным сокращением ее моторных единиц. При этом видимое укорочение мышцы может отсутствовать из-за того, что в процесс сокращения вовлекаются не все, а лишь те двигательные единицы, свойства которых наилучшим образом приспособлены к поддержанию тонуса мышцы и силы их асинхронного сокращения недостаточно для укорочения мышцы. Сокращения таких единиц при переходе от расслабления к напряжению или при изменении степени напряжения называют тоническими. Кратковременные сокращения, сопровождаемые изменением силы и длины мышцы, называют физическими.

Механизм мышечного сокращения

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат-миофибриллы (рис. 3). Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматический ретикулум и система поперечных трубочек - Т-система.

Рис. 3. Строение мышечного волокна

Функциональной единицей сократительного аппарата мышечной клетки является саркомер, из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками (рис. 4). Саркомеры в миофибрилле расположены последовательно, поэтому сокращения capкомеров вызывают сокращение миофибриллы и общее укорочение мышечного волокна.

Рис. 4. Схема строения саркомера

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченносгь, которая обусловлена особой организацией сократительных белков протофибрилл — актина и миозина. Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6-8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка - тропонина.

Тропонин и тропомиозин играют (см. рис. 3) важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) - анизотропный А-диск. В центре его видна более светлая полоска H. В состоянии покоя в ней нет актиновых нитей. По обе стороны А- диска видны светлые изотропные полоски - I-диски , образованные нитями актина.

В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре H -полоски обнаружена М-линия - структура, которая удерживает нити миозина.

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование современной техники позволило установить, что нанесение электрического раздражения на область Z -пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили X. и А. Хаксли предложить теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых.

Рис. 5. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

В процессе сокращения мышечного волокна в нем происходят следующие преобразования:

электрохимическое преобразование:

  • генерация ПД;
  • распространение ПД по T-системе;
  • электрическая стимуляция зоны контакта T-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са 2+ ;

хемомеханическое преобразование:

  • взаимодействие ионов Са 2+ с тропонином, изменение конфигурации тропомиозина, освобождение активных центров на актиновых филаментах;
  • взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги;
  • скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходите помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 °С. Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Г-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта, и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са 2+ из цистерн и повышению внутриклеточной концентрации Са 2+ " с 10 -7 до 10 -5 . Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са 2+ , составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са 2+ т.е. электрохимическое преобразование (рис. 6).

При повышении внутриклеточной концентрации ионов Са 2+ происходит их связывание с тропонином, который изменяет конфигурацию тропомиозина. Последний смешается в желобок межу нитями актина; при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением формации молекулы белка тропонина при связывании Са 2+ . Следовательно, участие ионов Са 2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин. Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином и смещение тропомиозина.

На пятом этапе электромеханического сопряжения происходит присоединение головки поперечного мостика миозина к мостикуактина — к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т.е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Рис. 6. Электромеханические процессы в мышце

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей (рис. 7).

Первоначально полагали, что ионы Са 2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровергли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

Рис. 7. Иллюстрация теории скользящих нитей:

А. а — мышца в покое: А. 6 — мышца при сокращении: Б. а. б — последовательное взаимодействие активных центров миозиновой головки с центрами на активной нити

Гидролиз АТФ в АТФазном центре головки миозина сопровождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоростью расщепления АТФ. Очевидно, что быстрые фазические волокна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъединение головки миозина и акгинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 10 -6 М.

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са 2+ . Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ. а энергообеспечение работы кальциевого насоса — также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов. Затем концентрация АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.

Функциональное значение АТФ при сокращении скелетной мускулатуры
  • Гидролиз АТФ под действием миозина, в результате поперечные мостики получают энергию для развития тянущего усилия
  • Связывание АТФ с миозином, ведущее к отсоединению поперечных мостиков, прикрепленных в актину, что создает возможность повторения цикла их активности
  • Гидролиз АТФ (под действием Са 2+ -АТФазы) для активного транспорта ионов Са 2+ в латеральные цистерны саркоплазматического ретикулума, снижающий уровень цитоплазматического кальция до исходного уровня

Суммация сокращений и тетанус

Если в эксперименте на отдельное мышечное волокно или всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающие сокращения будут иметь большую амплитуду, чем максимальное сокращение при одиночном раздражении. Сократительные эффекты, вызванные первым и вторым раздражениями, как бы складываются. Это явление называется суммацией сокращений (рис. 8). Оно наблюдается как при прямом, так и непрямом раздражении мышцы.

Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность: он должен быть длиннее рефрактерного периода, в противном случае на второе раздражение не будет ответа, и короче всей длительности сократительного ответа, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться после первого раздражения. При этом возможны два варианта: если второе раздражение поступает, когда мышца уже начала расслабляться, то на миографической кривой вершина этого сокращения будет отделена от вершины первого западением (рис 8, Ж-Г); если же второе раздражение действует, когда первое еще не дошло до своей вершины, то второе сокращение полностью сливается с первым, образуя единую суммированную вершину (рис 8, А-В).

Рассмотрим суммацию в икроножной мышце лягушки. Продолжительность восходящей фазы ее сокращения примерно 0,05 с. Поэтому для воспроизведения на этой мышце первого типа суммации сокращений (неполная суммация) необходимо, чтобы интервал между первым и вторым раздражениями был больше 0,05 с, а для получения второго типа суммации (так называемая полная суммация) — меньше 0,05 с.

Рис. 8. Суммация мышечных сокращений 8 ответ на два стимула. Отметка времени 20 мс

Как при полной, так и при неполной суммации сокращений потенциалы действия не суммируются.

Тетанус мышцы

Если на отдельное мышечное волокно или на всю мышцу действуют ритмические раздражения с такой частотой, что их эффекты суммируются, наступает сильное и длительное сокращение мышцы, называемое тетаническим сокращением , или тетанусом.

Амплитуда его может быть в несколько раз больше величины максимального единичного сокращения. При относительно малой частоте раздражений наблюдается зубчатый тетанус , при большой частоте - гладкий тетанус (рис. 9). При тетанусе сократительные ответы мышцы суммированы, а электрические ее реакции — потенциалы действия — не суммируются (рис. 10) и их частота соответствует частоте ритмического раздражения, вызвавшего тетанус.

После прекращения тетанического раздражения волокна полностью расслабляются, их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется послететанической, или остаточной, контрактурой.

Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

Утомление мышцы

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Рис. 9. Тетанус изолированного мышечного волокна (по Ф.Н. Серкову):

а — зубчатый тетанус при частоте раздражения 18 Гц; 6 — гладкий тетанус при частоте раздражения 35 Гц; М — миограмма; Р — отметка раздражения; В — отметка времени 1 с

Рис. 10. Одновременная запись сокращения (а) и электрической активности (6) скелетной мышцы кошки при тетаническом раздражении нерва

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает до нуля. Регистрируемую при этом запись сокращений называют кривой утомления.

Понижение работоспособности изолированной мышцы при ее длительном раздражении обусловлено двумя основными причинами:

  • во время сокращения в мышце накапливаются продукты обмена веществ (фосфорная, молочная кислоты и др.), оказывающие угнетающее действие на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия. Если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, длительно раздражая, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы;
  • постепенное истощение в мышце энергетических запасов. При длительной работе изолированной мышцы резко уменьшаются запасы гликогена, вследствие чего нарушается процесс ресинтеза АТФ и креатинфосфата, необходимый для осуществления сокращения.

И.М. Сеченов (1903) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза ускоряется, если в период отдыха производить работу другой рукой. Временное восстановление работоспособности мышц утомленной руки может быть достигнуто и при других видах двигательной активности, например при работе мышц нижних конечностей. В отличие от простого покоя такой отдых был назван И.М. Сеченовым активным. Он рассматривал эти факты как доказательство того, что утомление развивается прежде всего в нервных центрах.

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Мышечное волокно и миофибрилла (рис. 1). Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл, которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности.

Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты .

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина . В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина , соединенные с нитевидными молекулами белка тропомиозина.

Миозиновые филламенты образованы повторяющимися молеку­лами белка миозина . Каждая молекула миозина имеет головку и хвост . Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик .

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки ), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ) . ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей , мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

• Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

• Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга (рис. 2, Б).

• Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

• Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается (рис. 2, Г).

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

• В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

• Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са++ -каналов, через которые в саркоплазму выходят ионы Са++ (рис. 3, В).

• Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

• К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения .

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

• латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

• фаза укорочения (около 50 мс);

• фаза расслабления (около 50 мс).

Рис. 4. Характеристика одиночного мышечного сокращения. Происхождение зубчатого и гладкого тетануса .

Б – фазы и периоды иышечного сокращения,
Б – режимы мышечного сокращения, возникающие при разной частоте стимуляции мышцы.

Изменение длины мышцы показано синим цветом, потенциал действия в мышце - красным, возбудиумость мышцы - фиолетовым.

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

• Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

• При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

• При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

• числом ДЕ, участвующих в сокращении;

• частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

• динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

• статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

• динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

• изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

• изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

• ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Структурная организация. Гладкая мышца состоит из одиночных клеток веретенообразной формы (миоцитов ), которые располагаются в мышце более или менее хаотично. Сократительные филламенты расположены нерегулярно, вследствие чего отсутствует поперечная исчерченность мышцы.

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Механизм сопряжения возбуждения и сокращения. При возбуждении клетки Cа++ поступает в цитоплазму миоцита не только из саркоплазматичекого ретикулума, но и из межклеточного пространства. Ионы Cа++ при участии белка кальмодулина активируют фермент (киназу миозина), который переносит фосфатную группу с АТФ на миозин. Головки фосфорилированного миозина приобретают способность присоединяться к актиновым филламентам.

Сокращение и расслабление гладких мышц. Скорость удаления ионов Са++ из саркоплазмы значительно меньше, чем в скелетной мышце, вследствие чего расслабление происходит очень медленно. Гладкие мышцы совершают длительные тонические сокращения и медленные ритмические движения. Вследствие невысокой интенсивности гидролиза АТФ гладкие мышцы оптимально приспособлены для длительного сокращения, не приводящего к утомлению и большим энергозатратам.

Физиологические свойства мышц

Общими физиологическими свойствами скелетных и гладких мышц являются возбудимость и сократимость . Сравнительная характеристика скелетных и гладких мышц приведена в табл. 6.1. Физиологические свойства и особенности сердечной мускулатуры рассматриваются в разделе «Физиологические механизмы гомеостаза».

Таблица 7.1. Сравнительная характеристика скелетных и гладких мышц

Свойство

Скелетные мышцы

Гладкие мышцы

Скорость деполяризации

медленная

Период рефрактерности

короткий

длительный

Характер сокращения

быстрые фазические

медленные тонические

Энергозатраты

Пластичность

Автоматия

Проводимость

Иннервация

мотонейронами соматической НС

постганглионарными нейронами вегетативной НС

Осуществляемые движения

произвольные

непроизвольные

Чувствительность к химическим веществам

Способность к делению и дифференцировке

Пластичность гладких мышц проявляется в том, что они могут сохранять постоянный тонус как в укороченном, так и в растянутом состоянии.

Проводимость гладкой мышечной ткани проявляется в том, что возбуждение распространяется от одного миоцита к другому через специализированные электропроводящие контакты (нексусы).

Свойство автоматии гладкой мускулатуры проявляется в том, что она может сокращаться без участия нервной системы, за счет того, что некоторые миоциты способны самопроизвольно генерировать ритмически повторяющиеся потенциалы действия.