Основа скелетной мускулатуры. Строение скелетной мышцы и ее свойства

К первым относится вся скелетная мускулатура человека, обеспечивающая возможность выполнения произвольных движений, мышц языка, верхней трети пищевода и некоторые др., мышца сердца (миокард), имеющая свои особенности (состав белков, характер сокращения и др.). К гладким мышцам принадлежат мышечные слои внутренних органов и стенок кровеносных сосудов человека, обеспечивающие возможность выполнения ряда важнейших физиологических функций.

Структурными элементами всех типов мышц являются мышечные волокна . Поперечнополосатые мышечные волокна в скелетных мышцах образуют пучки, соединённые друг с другом прослойками соединительной ткани. Своими концами мышечные волокна сплетаются с сухожильными волокнами, через посредство которых мышечная тяга передаётся на кости скелета. Волокна поперечнополосатых мышц представляют собой гигантские многоядерные клетки, диаметр которых варьирует от 10 до 100 мкм, а длина часто соответствует длине мышц, достигая, например, в некоторых мышцах человека 12 см. Волокно покрыто эластичной оболочкой - сарколеммой и состоит из саркоплазмы, структурными элементами которой являются такие органоиды, как митохондрии, рибосомы, трубочки и пузырьки саркоплазматической сети и так называемые Т-системы, различные включения и т. д. В саркоплазме обычно в форме пучков расположено множество нитевидных образований толщиной от 0,5 до нескольких мкм - миофибрилл, обладающих, как и всё волокно в целом, поперечной исчерченностью. Каждая миофибрилла разделена на несколько сот участков длиной 2,5-3 мкм, называемых саркомерами. Каждый саркомер, в свою очередь, состоит из чередующихся участков - дисков, обладающих неодинаковой оптической плотностью и придающих миофибриллам и мышечному волокну в целом характерную поперечную исчерченность, чётко обнаруживаемую при наблюдении в фазовоконтрастном микроскопе. Более тёмные диски обладают способностью к двойному лучепреломлению и называются анизотропными, или дисками А. Более светлые диски не обладают этой способностью и называются изотропными, или дисками I. Среднюю часть диска А занимает зона более слабого двойного лучепреломления - зона Н. Диск I делится на 2 равные части тёмной Z-пластинкой, отграничивающей один саркомер от другого. В каждом саркомере имеется два типа нитей (филаментов), состоящих из мышечных белков: толстые миозиновые и тонкие - актиновые. Несколько иную структуру имеют гладкие мышечные волокна. Они представляют собой веретенообразные одноядерные клетки, лишённые поперечной исчерченности. Длина их обычно достигает 50-250 мкм (в матке - до 500 мкм), ширина - 4-8 мкм; миофиламенты в них обычно не объединены в обособленные миофибриллы, а расположены по длине волокна в виде множества одиночных актиновых нитей. Упорядоченная система миозиновых нитей в гладкомышечных клетках отсутствует. В гладкой мускулатуре моллюсков наиболее важную роль в осуществлении запирательной функции играют, по-видимому, парамиозиновые волокна (тропомиозин А).

Химический состав мышц колеблется в зависимости от типа и функционального состояния мышцы и ряда др. факторов. Основные вещества, входящие в состав поперечнополосатых мышц человека и их содержание (в % к сырой массе) представлены ниже:

  • Вода 72-80
  • Плотные вещества 20-28

В том числе:

  • Белки 16,5-20,9
  • Гликоген 0,3-3,0
  • Фосфатиды 0,4-1,0
  • Холестерин 0,06-0,2
  • Креатин + креатинфосфат 0,2-0,55
  • Креатинин 0,003-0,005
  • АТФ 0,25-0,4
  • Карнозин 0,2-0,3
  • Карнитин 0,02-0,05
  • Анзерин 0,09-0,15
  • Свободные аминокислоты 0,1-0,7
  • Молочная кислота 0,01-0,02
  • Зола 1,0-1,5

В среднем около 75% сырой массы мышцы составляет вода. Основное количество плотных веществ приходится на долю белков. Различают белки миофибриллярные (сократительные) - миозин, актин и их комплекс - актомиозин, тропомиозин и ряд так называемых минорных белков (a и b-актинины, тропонин и др.), и саркоплазматические - глобулины X, миогены, дыхательные пигменты, в частности миоглобин, нуклеопротеиды и ферменты, участвующие в процессах обмена веществ в мышцах. Из др. соединений важнейшими являются экстрактивные, принимающие участие в обмене веществ и осуществлении сократительной функции мышц: АТФ, фосфокреатин, карнозин, анзерин и др.; фосфолипиды, играющие важную роль в образовании клеточных микроструктур и в обменных процессах; безазотистые вещества: гликоген и продукты его распада (глюкоза, молочная кислота и др.), нейтральные жиры, холестерин и др.; минеральные вещества - соли К, Na, Ca, Mg. Гладкие мышцы существенно отличаются по химическому составу от поперечнополосатых (более низкое содержание контрактальных белков - актомиозина, макроэргических соединений, дипептидов и др.).

Функциональные особенности поперечнополосатых мышц. Поперечнополосатые мышцы богато снабжены различными нервами, с помощью которых осуществляется регуляция мышечной деятельности со стороны нервных центров. Важнейшие из них: двигательные нервы, проводящие к мышцам импульсы, вызывающие её возбуждение и сокращение; чувствительные нервы, по которым от мышцы к нервным центрам поступает информация о её состоянии, и, наконец, адаптационно-трофические волокна симпатической нервной системы, воздействующие на обмен веществ и замедляющие развитие утомления мышц.

Каждая веточка двигательного нерва, иннервирующего целую группу мышечных волокон, образующих так называемую моторную единицу, доходит до отдельного мышечного волокна. Все мышечные волокна, входящие в состав такой единицы, сокращаются при возбуждении практически одновременно. Под влиянием нервного импульса в окончаниях двигательного нерва высвобождается медиатор - ацетилхолин, взаимодействующий с холинорецептором постсинаптической мембраны (синапсы). В результате этого происходит повышение проницаемости мембраны для ионов Na и К, что, в свою очередь, обусловливает её деполяризацию (появление постсинаптического потенциала). После этого на соседних участках мембраны мышечного волокна возникает волна возбуждения (волна электроотрицательности), которая распространяется по скелетному мышечному волокну обычно со скоростью несколько метров в 1 сек. В результате возбуждения мышца изменяет свои эластические свойства. Если точки прикрепления мышцы не фиксированы неподвижно, происходит её укорочение (сокращение). При этом мышца производит определённую механическую работу. Если точки прикрепления мышцы неподвижны, в ней развивается напряжение. Между возникновением возбуждения и появлением волны сокращения или волны напряжения протекает некоторое время, называемое латентным периодом. Сокращение мышцы сопровождается выделением тепла, которое продолжается в течение определённого времени и после их расслабления.

В мышцах человека установлено существование "медленных" мышечных волокон (к ним принадлежат "красные", содержащие дыхательный пигмент миоглобин) и "быстрых" ("белых", не имеющих миоглобина), различающихся скоростью проведения волны сокращения и её продолжительностью. В "медленных" волокнах длительность волны сокращения примерно в 5 раз больше, а скорость проведения в 2 раза меньше, чем в "быстрых" волокнах. Почти все скелетные мышцы относятся к смешанному типу, т.е. содержат как "быстрые", так и "медленные" волокна. В зависимости от характера раздражения возникает либо одиночное - фазное - сокращение мышечных волокон, либо длительное - тетаническое. Тетанус возникает в случае поступления в мышцу серии раздражений с такой частотой, при которой каждое последующее раздражение ещё застает мышцу в состоянии сокращения, вследствие чего происходит суммирование сократительных волн. Н.Е. Введенский установил, что увеличение частоты раздражений вызывает возрастание тетануса, но лишь до известного предела, называемого им "оптимумом". Дальнейшее учащение раздражений уменьшает тетаническое сокращение (пессимум). Развитие тетануса имеет большое значение при сокращении "медленных" мышечных волокон. В мышцах с преобладанием "быстрых" волокон максимальное сокращение - обычно результат суммации сокращений всех моторных единиц, в которые нервные импульсы поступают, как правило, не одновременно, асинхронно.

В поперечнополосатых мышцах установлено также существование так называемых чисто тонических волокон. Тонические волокна участвуют в поддержании "неутомляемого" мышечного тонуса. Тоническим сокращением называется медленно развивающееся слитное сокращение, способное длительно поддерживаться без значительных энергетических затрат и выражающееся в "неутомляемом" противодействии внешним силам, стремящимся растянуть мышечный орган. Тонические волокна реагируют на нервный импульс волной сокращения лишь локально (в месте раздражения). Тем не менее, благодаря большому числу концевых двигательных бляшек тоническое волокно может возбуждаться и сокращаться всё целиком. Сокращение таких волокон развивается настолько медленно, что уже при весьма малых частотах раздражения отдельные волны сокращения накладываются друг на друга и сливаются в длительно поддерживающееся укорочение. Длительное противодействие тонических волокон, а также медленных фазных волокон растягивающим усилиям обеспечивается не только упругим напряжением, но и возрастанием вязкости мышечных белков.

Для характеристики сократительной функции мышц пользуются понятием "абсолютной силы" , которая является величиной, пропорциональной сечению мышцы , направленной перпендикулярно её волокнам, и выражается в кг/см2. Так, например, абсолютная сила двуглавой мышцы человека равна 11,4, икроножной - 5,9 кг/см2.

Систематическая усиленная работа мышц (тренировка) увеличивает их массу, силу и работоспособность. Однако чрезмерная работа приводит к развитию утомления, т.е. к падению работоспособности мышцы. Бездеятельность мышцы ведет к их атрофии.

Функциональные особенности гладких мышц

Гладкие мышцы внутренних органов по характеру иннервации, возбуждения и сокращения существенно отличаются от скелетных мышц. Волны возбуждения и сокращения протекают в гладких мышцах в очень замедленном темпе. Развитие состояния "неутомляемого" тонуса гладких мышц связано, как и в тонических скелетных волокнах, с замедленностью сократительных волн, сливающихся друг с другом даже при редких ритмических раздражениях. Для гладких мышц характерна также способность к автоматизму, т.е. к деятельности, не связанной с поступлением в мышцу нервных импульсов из центральной нервной системы. Установлено, что способностью к ритмическому самопроизвольному возбуждению и сокращению обладают не только нервные клетки, имеющиеся в гладких мышцах, но и сами гладкомышечные клетки.

Существенное значение для организма имеет способность гладких мышц изменять длину без повышения напряжения (наполнение полых органов, например мочевого пузыря, желудка и др.).

Скелетные мышцы человека

Скелетные мышцы человека, различные по форме, величине, положению,составляют свыше 40% массы его тела. При сокращении происходит укорочение мышцы, которое может достигать 60% их длины; чем длиннее мышца (самая длинная мышца тела портняжная достигает 50 см), тем больше размах движении. Сокращение куполообразной мышцы (например, диафрагмы) обусловливает ее уплощение, сокращение кольцеобразных мышц (сфинктеров) сопровождается сужением или закрытием отверстия. Мышцы радиального направления, наоборот, вызывают при сокращении расширение отверстий. Если мышцы расположены между костными выступами и кожей, их сокращение обусловливает изменение кожного рельефа.

Все скелетные, или соматические (от греч. soma - тело), мышцы по топографо-анатомическому принципу могут быть разделены на мышцы головы, среди которых различают мимические и жевательные мышцы, воздействующие на нижнюю челюсть, мышцы шеи, туловища и конечностей. Мышцы туловища покрывают грудную клетку, составляют стенки брюшной полости, вследствие чего их делят на мышцы груди, живота и спины. Расчленённость скелета конечностей служит основанием для выделения соответствующих групп мышц: для верхней конечности - это мышцы плечевого пояса, плеча, предплечья и кисти; для нижней конечности - мышцы тазового пояса, бедра, голени, стопы.

У человека около 500 мышц, связанных со скелетом. Среди них одни крупные (например, четырёхглавая мышца бедра), другие - мелкие (например, короткие мышцы спины). Совместная работа мышц выполняется по принципу синергизма, хотя отдельные функциональные группы мышц при выполнении определенных движений работают как антагонисты. Так, спереди на плече находятся двуглавая и плечевая мышцы, выполняющие сгибание предплечья в локтевом суставе, а сзади располагается трёхглавая мышца плеча, сокращение которой вызывает противоположное движение - разгибание предплечья.

В суставах шаровидной формы происходят простые и сложные движения. Например, в тазобедренном суставе сгибание бедра вызывает пояснично-подвздошная мышца, разгибание - большая ягодичная. Бедро отводится при сокращении средней и малой ягодичных мышц, а приводится с помощью пяти мышц медиальной группы бедра. По окружности тазобедренного сустава локализуются также мышцы, которые обусловливают вращение бедра внутрь и наружу.

Наиболее мощные мышцы размещаются на туловище. Это мышцы спины - выпрямитель туловища, мышцы живота, составляющие у человека особую формацию - брюшной пресс. В связи с вертикальным положением тела мышцы нижней конечности человека стали более сильными, поскольку, кроме участия в локомоции, они обеспечивают опору тела. Мышцы верхней конечности в процессе эволюции, напротив, сделались более ловкими, гарантирующими выполнение быстрых и точных движений.

На основе анализа пространственного положения и функциональной деятельности мышц современная наука пользуется также следующим их объединением: группа мышц, осуществляющая движения туловища, головы и шеи; группа мышц, осуществляющая движения плечевого пояса и свободной верхней конечности; мышцы нижней конечности. В пределах этих групп выделяются более мелкие ансамбли.

Патология мышц

Нарушения сократительной функции мышц и их способности к развитию и поддержанию тонуса наблюдаются при гипертонии, инфаркте миокарда, миодистрофии, атонии матки, кишечника, мочевого пузыря, при различных формах параличей (например, после перенесенного полиомиелита) и др. Патологические изменения функций мышечных органов могут возникать в связи с нарушениями нервной или гуморальной регуляции, повреждениями отдельных мышц или их участков (например, при инфаркте миокарда) и, наконец, на клеточном и субклеточном уровнях. При этом может иметь место нарушение обмена веществ (прежде всего ферментной системы регенерации макроэргических соединений - главным образом АТФ) или изменение белкового сократительного субстрата. Указанные изменения могут быть обусловлены недостаточным образованием мышечных белков на почве нарушения синтеза соответствующих информационных, или матричных, РНК, т.е. врождённых дефектов в структуре ДНК хромосомного аппарата клеток. Последняя группа заболеваний, таким образом, относится к числу наследственных заболеваний.

Саркоплазматические белки скелетных и гладких мышц представляют интерес не только с точки зрения возможного участия их в развитии вязкого последействия. Многие из них обладают ферментативной активностью и участвуют в клеточном метаболизме. При повреждении мышечных органов, например при инфаркте миокарда или нарушении проницаемости поверхностных мембран мышечных волокон, ферменты (креатинкиназа, лактатдегидрогеназа, альдолаза, аминотрансферазы и др.) могут выходить в кровь. Таким образом, определение активности этих ферментов в плазме крови при ряде заболеваний (инфаркт миокарда, миопатии и др.) представляет серьёзный клинический интерес.

Ключевую роль в осуществлении движения как основополагающего свойства живого организма играют мышцы. У человека мышцы составляют от 40% до 50% массы тела (Одноралов Н.И.,1965; Бегун П.И., Шукейло Ю.А.,2000; Финандо Д., Финандо С.,2001; Lockart R.D. и соавт.,1969). Мышечная система человека имеет три важнейшие функции (Финандо Д., Финандо С.,2001; Иваничев Г.А., Старосельцева Н.Г,2002):

  • первая функция - поддержание тела и внутренних органов;
  • вторая функция - движения тела в целом, его отдельных частей и внутренних органов;
  • третья функция - метаболическая.

Все мышцы человеческого организма имеют общие основные свойства , которые имеют важное значение для функционирования мышечной системы и дополняют друг друга:

1. возбудимость - способность воспринимать нервный импульс и отвечать на него;

2. сократимость - способность укорочения при получении соответствующего стимула;

3. растяжимость - способность удлиняться под воздействием внешней силы;

4. эластичность - способность возвращаться к нормальной форме после сокращения или растяжения.

Мышечная система человека представлена мышцами трех следующих типов:

1. скелетные мышцы;

2. висцеральные мышцы;

3. мышца сердца.

Главным объектом данного учебного пособия являются скелетные мышцы, связанные с движениями позвоночника и конечностей. Они предназначены для выполнения статических и динамических задач человеческого организма. Для статики они должны отвечать следующим требованиям :

1. противостоять силам гравитации с минимальной затратой энергии, обеспечивая силовой баланс между частями опорно-двигательного аппарата;

2. обеспечивать постоянство внутреннего эндоритма составляющих элементов опорно-двигательного аппарата.

Для динамики скелетные мышцы человека должны выполнять следующие функции:

  • совершать движения различными регионами позвоночника и конечностей в определенной последовательности в виде перемещения тела или его частей адекватно цели, в соответствующем объеме;
  • ограничивать распространение этого движения на соседние регионы, обеспечивать однонаправленность выполнения движения.

Скелетные мышцы - это поперечно-полосатые мышцы Общее число скелетных мышц в теле человека - более 600 (Бегун П.И., Шукейло Ю.А,2000). Каждая скелетная мышца является единым органом, обладающим сложной структурной организацией (Хабиров ФА, Хабиров Р.А.,1995; Петров К Б.,1998; Бегун П.И., Шукейло Ю А,2000; Иваничев Г.А, Старосельцева Н.Г.,2002). Всякое мышечное волокно является многоядерной цилиндрической клеткой, окруженной мембраной - сарколеммой. Мышечные клетки содержат смещенные к периферии ядра и миофибриллы.

Поперечные мембраны разделяют каждую миофибриллу на саркомеры - структурные единицы миофибрилл, обладающие способностью сокращаться. Каждая миофибрилла представляет собой цепь, составленную из филаментов. Различают толстые филаменты - темные, анизотропные, состоящие из миозина, и тонкие миофиламенты - белые, изотропные, состоящие из актина. Белки актин и миозин составляют актиномиозиновый комплекс, который обеспечивает под влиянием аденозинтрифосфорной кислоты мышечное сокращение. Каждое мышечное волокно окружает соединительно-тканная оболочка - эндомизиум, группу волокон - перимизиум, всю мышцу - эпимизиум.

Скелетные мышцы крепятся к костям посредством соединительной части мышцы - сухожилия. К вспомогательному аппарату мышц относятся фасции, синовиальные сумки, влагалища сухожилий, сесамовидные кости. Фасции - это фиброзные оболочки, покрывающие мышцы и их отдельные группы. Синовиальные сумки, содержащие синовиальную жидкость, являются внесуставными полостями, предохраняющими мышцу от повреждения, уменьшающими трение. Влагалища сухожилий предназначены для защиты сухожилий мышц от тесного прилежания к костям, что облегчает работу мышц. В толще некоторых мышц имеются сесамовидные кости, улучшающие работу мышц. Самая большая сесамовидная кость - надколенник, расположена в сухожилии четырехглавой мышцы бедра.

В поперечно-полосатой мышечной ткани выделяют три типа волокон (Сапрыкин В.П., Турбин Д.А.,1997, Макарова И Н., Епифанов В.А, 2002):

1 тип - красные, медленные;

2 тип - быстрые:

А - промежуточные, красные,

В - белые.

Мышца человека содержит и белые, и красные волокна, но в разных соотношениях. Медленные красные волокна 1 типа обладают хорошо развитой капиллярной сетью, большим количеством митохондрий и высокой активностью окислительных ферментов, что определяет их существенную аэробную выносливость при выполнении работы продолжительное время (Иваничев Г.А., Старосельцева Н.Г,2002). Быстрые красные волокна 2 типа А занимают промежуточное положение между красными медленными волокнами и белыми быстрыми волокнами. Отличительной особенностью промежуточных красных волокон, относящихся к быстрым, является их способность использовать энергию при гликолизе как по аэробному, так и по анаэробному циклам Кребса.

Быстрые красные волокна являются мало утомляемыми мышечными волокнами. Мышечные волокна белые содержат большое количество миофибрилл, благодаря которому развивается большая сила сокращения. Они относятся к быстрым волокнам 2 типа В. Быстрые мышечные волокна содержат больше гликолитических ферментов, меньше митохондрий и миоглобина, имеют незначительную сеть капилляров. Аэробная выносливость этих волокон невелика. Они легко и быстро утомляются.

Скелетные мышцы человека состоят из экстрафузальных мышечных волокон, специализируемых на сократительной функции, и интрафузальных мышечных волокон, представляющих нервно-мышечное веретено (Хабиров Ф.А., Хабиров Р.А.,1995).

Сложный аппарат обеспечения движений включает в себя афферентную и эфферентную части (Карлов В.А.,1999; Ходос X.-Б.Г.,2001).

Красноярова Н.А.

Анатомо-физиологические особенности скелетных мышц и тесты для их исследования

Скелетные мышцы построены из поперечнополосатой скелетной мышечной ткани. Они являются произвольными, т.е. их сокращение осуществляется сознательно и зависит от нашего желания. Всего в теле человека насчитывается 639 мышц, 317 из них - парные, 5 - непарные.

Скелетная мышца - это орган, имеющий характерную форму и строение, типичную архитектонику сосудов и нервов, построенный в основном из поперечнополосатой мышечной ткани, покрытый снаружи собственной фасцией, обладающий способностью к сокращению.

Принципы классификации мышц . В основу классификации скелетных мышц человеческого организма положены различные признаки: область тела, происхождение и форма мышц, функция, ана-

томо-топографические взаимоотношения, направление мышечных волокон, отношение мышцы к суставам. По отношению к областям человеческого тела различают мышцы туловища, головы, шеи и конечностей. Мышцы туловища в свою очередь разделяют на мышцы спины, груди и живота. Мышцы

верхней конечности соответственно имеющимся частям скелета делят на мышцы пояса верхней конечности, мышцы плеча, предплечья и кисти. Гомологичные отделы характерны для мышц нижней конечности - мышцы пояса нижней конечности (мышцы таза), мышцы бедра, голени и стопы.

По форме мышцы могут быть простыми и сложными. К простым мышцам относят длинные, короткие и широкие. Сложными считают многоглавые (двуглавые, трехглавые, четырехглавые), многосухожильные, двубрюшные мышцы. Сложными являются также мышцы определенной геометрической формы: круглые, квадратные, дельтовидные, трапециевидные, ромбовидные и т. д.

По функции различают мышцы-сгибатели и разгибатели; мышцы приводящие и отводящие; вращающие (ротаторы); сфинктеры (суживатели) и дилятаторы (расширители). Вращающие мышцы в

зависимости от направления движения подразделяют на пронаторы и супинаторы (вращающие внутрь и наружу). Также предусматривается подразделение их на синергисты и антагонисты. Синергисты - это мышцы, выполняющие одинаковую функцию и при этом усиливающие друг друга. Антагонисты - это мышцы, выполняющие противоположные функции, т.е. производящие противоположные друг другу движения.

По расположению - поверхностные и глубокие; наружные и внутренние; медиальные и латеральные.

По направлению мышечных волокон - с параллельным, косым, круговым и поперечным ходом мышечных волокон.

Строение мышц. Скелетная мышца как орган включает в себя собственно мышечную и сухожильную части, систему соединительнотканных оболочек, собственные сосуды и нервы. Средняя, утолщенная часть мышцы называется брюшком. На обоих концах мышцы в большинстве случаев находятся сухожилия, с помощью которых она прикрепляется к костям. Структурно-функциональной единицей собственно мышечной части является поперечнополосатое мышечное волокно .

В процессе мышечного сокращения актиновые нити втягиваются в промежутки между миозиновыми, изменяют свою конфигурацию, сцепляются друг с другом. Обеспечение энергией этих процессов происходит за счет расщепления в митохондриях молекул АТФ.

Функциональная единица мышцы - мион - совокупность поперечнополосатых мышечных волокон, иннервируемых одним двигательным нервным волокном. Вспомогательным аппаратом скелетных мышц являются фасции, фиброзные и костно-фиброзные каналы, синовиальные влагалища, синовиальные сумки, мышечные блоки и сесамовидные кости. Фасции представляют собой соединительнотканные оболочки, ограничивающие подкожную жировую клетчатку, покрывающие мышцы и некоторые внутренние органы.

Скелетная мышечная ткань

Схема скелетной мышцы в разрезе.

Строение скелетной мышцы

Скелетная (поперечно-полосатая) мышечная ткань - упругая, эластичная ткань , способная сокращаться под влиянием нервных импульсов : один из типов мышечной ткани . Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70-75 % из воды.

Гистогенез

Источником развития скелетной мускулатуры являются клетки миотомов - миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму ; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты - мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл , постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Строение

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-спутниц), покрытых общей базальной мембраной .

Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров.

Строение миосимпласта

Строение миосателлитов

Миосателлиты - одноядерные клетки, прилежащие к поверхности миосимпласта. Эти клетки отличаются низкой дифференцировкой и служат взрослыми стволовыми клетками мышечной ткани. В случае повреждения волокна или длительном увеличении нагрузки клетки начинают делиться, обеспечивая рост миосимпласта.

Механизм действия

Функциональной единицей скелетной мышцы является моторная единица (МЕ). МЕ включает в себя группу мышечных волокон и иннервирующий их мотонейрон . Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), Моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны (FR-МН) S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий . МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путем окислительного фосфорилирования.

Как правило, число волокон в FR-ME меньше, чем в S-ME. Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза . В них отсутствует миоглобин , поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция

Данный вид мышечной ткани обеспечивает возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным - так называемая точка фиксации (лат. púnctum fíxsum ), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Перемещающийся фрагмент мышцы называют подвижной точкой , (лат. púnctum móbile ), которая является местом её прикрепления. Тем не менее, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile , и наоборот.

Примечания

См. также

Литература

  • Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котовский Гистология. - 5-е изд., перераб. и доп.. - Москва: Медицина, 2002. - 744 с. - ISBN 5-225-04523-5

Ссылки

  • - Механизмы развития мышечной ткани (англ.)

Wikimedia Foundation . 2010 .

Мышечная система отвечает за движение человеческого тела. Прикреплено к костям около 700 мышц, которые составляют примерно половину массы тела человека. Каждая из этих мышц является дискретным органом, выполненным из ткани скелетных мышц, кровеносных сосудов, сухожилий и нервов. Мышечная ткань также находится внутри сердца, органов пищеварения и кровеносных сосудов. В этих органах она служит для транспортировки веществ … [Читайте ниже]

  • Голова и шея
  • Грудь и верх спины
  • Живот, поясница и таз
  • Ноги и стопы
  • Мышцы рук и кистей

[Начало сверху] …

Типы мышечных тканей

Есть три вида мышечной ткани: висцеральные, мышцы сердца и скелета.
Висцеральные — находятся внутри органов, таких как желудок, кишечник и кровеносные сосуды. Самые слабые из всех мышц внутренних органов, служат для перемещения веществ. Висцеральные мышцы не могут непосредственно контролироваться сознанием. Термин «гладкая» используется для висцеральной мышцы, так как она имеет гладкую структуру, однородный вид (если смотреть под микроскопом). Её внешний вид резко контрастирует с сердечной и скелетными мышцами.
Сердечная мышца расположена только в сердце, она отвечает за перекачивание крови по всему телу. Сердечная мышца не контролируется сознательно. В то время как гормоны и сигналы мозга могут регулировать скорость сжатия сердечной мышцы, стимулируя сокращение. Естественный стимулятор биения сердца — сердечная мышечная ткань, которая заставляет другие клетки сокращаться.
Клетки сердечной мышечной ткани являются поперечно — полосатыми, то есть, они представляют из себя светлые и темные полосы, если смотреть под световым микроскопом. Расположение белковых волокон внутри клеток вызывает эти светлые и темные полосы. Мышечная клетка очень сильна, в отличие от висцеральной.
Клетки сердечной мышцы являются разветвленными или X Y формы, клетки плотно соединены между собой специальными переходами, называемыми интеркалированными дисками. Интеркалированные диски состоят из пальцевидной проекции двух соседних ячеек, которые сцепляются и обеспечивают прочную связь между клетками. Разветвленная структура и интеркалированные диски позволяют мышечным клеткам противостоять высокому давлению крови и напряжению при перекачке крови в течение всей жизни. Эти функции также способствуют быстрому распространению электрохимических сигналов от клетки к клетке так, что сердце может биться как единое целое.

Скелетные мышцы являются единственной мышечной тканью в организме человека, которая управляется сознательно. Каждое физическое действие, которое человек сознательно выполняет (например: разговор, ходьба или письмо) требует движения скелетных мышц. Скелетные могут сжиматься, чтобы перемещать части тела ближе к кости, к которой мышца прикрепляется. Большинство скелетных мышц прикреплены к двум костям через суставы, так что они служат для перемещения частей этих костей ближе друг к другу.
Каркасные (скелетные) мышечные клетки образуются, когда множество мелких клеток — предшественников скомковываются вместе, чтобы сформировать длинные, прямые, многоядерные волокна. Исчерчены каркасные мышцы так же, как и сердечная, поэтому они очень сильны. Скелетная мышца получает свое название от того, что она всегда подключаются к скелету, по крайней мере, в одном месте.

Анатомия скелетных мышц

Большинство скелетных прикреплены к двум костям через сухожилия. Сухожилия — жесткие полосы плотной регулярной соединительной ткани; сильные коллагеновые волокна прочно прикрепляют мышцы к костям. Сухожилия находятся в крайнем напряжении, когда они тянутся, так что они очень сильно вплетены в покрытия мышц и костей.

Мышцы двигаются за счет сокращения их длины, натягивания сухожилий и перемещения костей ближе друг к другу. Одна из костей втягивается по направлению к другой кости, которая остается неподвижной. Место на движущейся кости, которая соединяется с мышцей через сухожилия называется вставкой. Мышцы живота находятся между сухожилиями, что позволяет делать фактическое сокращение.

Названия скелетных мышц

Их названия происходят на основе множества различных факторов, в том числе местонахождения, происхождения и вставки, количества, формы, размера, направления и функции.

Местоположение

Много мышц получают имена от анатомической области. Брюшная и прямая, поперечная брюшная, например, находятся в брюшной полости. Другие, как и передняя большеберцовая, названы из-за части кости (передняя часть голени), к которой они присоединены. Другие мышцы используют симбиоз двух видов названий, как плечелучевая, которая названа в честь области нахождения.

Происхождение

Некоторые мышцы названы на основе их подключения к стационарной и движущейся кости. Эти мышцы становится очень легко определить, когда вы знаете имена костей, к которым они присоединены.

Некоторые подключаются к более чем 1 кости или более чем в одном месте и имеют более чем один источник. Мышца сразу с двумя происхождения называется бицепсом, а с тремя происхождения — трицепсной. И, наконец, мышца с четырьмя происхождениями называется четырехглавой.

Форма, размер и направление

Также важно классифицировать мышцы по форме. Например, дельтовидные имеют дельта — или треугольную форму. Зубчатые имеют зубчатую или пилообразный форму. Ромбовидные — обладают формой ромба.
Размер может быть использован, чтобы различать два типа мышц, найденных в одном и том же регионе. Область ягодичной части содержит три мышцы, дифференцированные по размеру: ягодичная большая, ягодичная средняя и малая. И, наконец, направления мышечных волокон могут быть использованы для их идентификации. В брюшине существует несколько широких и плоских. Мышцы с волокнами, расположенными вверх и вниз — являются прямыми, работающие в поперечном направлении (слева направо) — поперечные, а работающие под углом, являются косыми.

Функции мышечной ткани человека

Мышцы иногда классифицируют по типу функции, которую они выполняют. Большинство мышц предплечья именуются в зависимости от их функций, потому что они расположены в том же регионе и имеют одинаковые формы и размеры. Например, сгибатели предплечья сгибают запястья и пальцы.
Супинатор — это мышца, которая поднимает запястье ладонью вверх. В ноге есть такие, которые называются аддукторами, чья роль заключается в стягивании ног.

Инициативные группы в скелетных мышцах

Чаще всего они работают в группах, чтобы произвести точные движения. Мышца, которая производит какое — либо конкретное движение тела известна как агонист или тягач. Агонисты всегда парны с антагонистами, которые производят противоположный эффект на одних и тех же костях. Например, двуглавая мышцы плеча сгибает руку в локте. В качестве антагониста для этого движения — трехглавая плеча — расширяет руку в локте. Когда трицепсы расширяют руку, бицепс будет считаться антагонистом.

В дополнение к агонист / антагонист классификации, другие мышцы работают, чтобы поддержать движение агониста.
Синергистами являются мышцы, которые помогают стабилизировать движение и уменьшить лишние движения. Они обычно находятся в областях вблизи агониста и часто подключаются к той же кости. Если вы поднимаете что-то тяжелое, они помогают держать тело в вертикальном положении неподвижно, так что вы поддерживаете свой баланс во время подъема.

Гистология скелетной мускулатуры

Скелетные мышечные волокна значительно отличаются от других тканей организма из — за их узкоспециализированных функций. Многие из органелл, которые составляют мышечные волокна являются уникальными для данного типа клетки.

Сарколемма является клеточной мембраной мышечных волокон. Сарколемма выступает в качестве проводника для электрохимических сигналов, которые стимулируют мышечные клетки. Подключенные к сарколемме поперечные трубочки (Т-трубочки) помогают переносить электрохимические сигналы в середину мышечного волокна. Саркоплазматический ретикулум служит в качестве хранилища для ионов кальция (Са2 +), которые имеют жизненно важное значение для сокращения мышц.
Митохондрии , движущая сила клетки, в изобилии находятся в мышечных клетках, чтобы обеспечивать энергией в виде АТФ активные мышцы. Большая часть структуры мышечного волокна выполнена из миофибрилл, которые являются сократительными структурами клетки. Миофибриллы составлены из многих белковых волокон, расположенных в повторяющихся субъединицах, называемых саркомерами. Саркомера является функциональной единицей мышечных волокон.

Структура саркомера

Саркомеры изготавливаются из двух типов белковых волокон: толстых нитей и тонких нитей.

Толстые нити состоят из множества соединенных звеньев белка миозина. Миозин является белком, который вызывает мышцы сокращаться.
Тонкие нити состоят из трех белков:

Актин.
Актин образует спиральную структуру, которая составляет большую часть массы тонкой нити.

Тропомиозин.
Тропомиозин — длинный волокнистый белок, который оборачивается вокруг актина и охватывает миозин, связывая с актином.

Тропонин.
Белок, связывающийся очень плотно с тропомиозином во время мышечного сокращения.

Функции мышечной ткани

Основной функцией мышечной системы является движение . Мышцы являются единственной тканью в организме, что имеет возможность перемещать другие части тела.
Связанная с функцией движения является вторая функция мускульной системы: поддержание позы и положения тела . Мышцы зачастую держат тело неподвижно или в определенном положении, а не вызывают движение. Мышцы, отвечающие за положение тела имеют наивысшую выносливость — они выполняют свои функции в течение всего дня, не становясь усталыми.
Еще одна функция, связанная с движением является движение веществ внутри тела . Сердечные и висцеральные мышцы, в первую очередь, ответственны за транспортировку веществ, таких как кровь или питательные вещества из одной части тела в другую.

Последняя функция мышечной ткани является генерация тепла . В результате высокой скорости метаболизма сокращающейся мышцы, наша мышечная система производит большое количество отработанного тепла. Многие небольшие сокращения мышц в организме производят наше естественное тепло тела. Когда мы прилагаем усилия больше, чем обычно, дополнительные сокращения мышц приводят к повышению температуры тела и в конечном итоге к потливости.

Скелетная мускулатура в роли рычага

Мышцы скелетной системы работают вместе с костями и суставами образуя рычажные системы. Они действуют как передатчики усилия, а кость выступает в качестве опоры; при движении мышцы и кости, объект перемещается.

Есть три класса рычагов, но подавляющее большинство рычагов в теле — рычаги третьего класса. Рычаг третьего класса представляет собой систему, в которой точка опоры находится на конце рычага. В организме, рычаги третьего класса, служат для увеличения расстояния для сокращения мышцы.

Двигательные единицы мышц

Нервные клетки, называемые моторными нейронами, управляют скелетными мышцами. Каждый двигательный нейрон контролирует несколько мышечных клеток в группе. Когда двигательный нейрон получает сигнал от мозга, он стимулирует все клетки мышц в то же время.
Размер двигательных единиц изменяется по всему телу, в зависимости от функции. Мышцы, которые выполняют тонкие движения — как мышцы глаз или пальцев, имеют очень много нейронов для повышения точности контроля мозга над этими структурами. Мышцы, которые требуют много сил, чтобы выполнять свои функции, как ноги или руки — имеют много мышечных клеток и меньше нейронов в каждом блоке.

Когда положительные ионы достигают саркоплазматического ретикулума, ионы Са2 + высвобождаются и протекают в миофибриллы. Ионы Са2 + связываются с тропонином, что вызывает молекулу тропонина изменять форму и переместить близлежащие молекулы тропомиозина. Тропомиозин отодвигается от миозина и связывается с молекулой актина, что позволяет актину и миозину связываться друг с другом.

Типы мышечных сокращений

Силой сжатия мышц можно управлять двумя факторами: количеством двигательных единиц (нейронов), участвующих в сокращении и количеством импульсов от нервной системы. Один нервный импульс моторного нейрона вызовет краткое напряжение группы мышц, а затем заставит расслабиться. Если двигательный нейрон обеспечивает несколько сигналов в течение короткого периода времени, то сила и продолжительность сжатия увеличивается. Если двигательный нейрон обеспечивает много нервных импульсов в быстрой последовательности, мышца может войти в состояние полного и прочного сокращения. Мышца останется в сжатом положении, пока скорость сигнала нерва не замедлится или до тех пор, пока мышца станет слишком усталой, чтобы поддерживать напряжение.

Не все сокращения мышц производят движение. Изометрическое сокращение — легкие схватки, которые увеличивают напряжение в мышцах, не оказывая достаточной силы, чтобы переместить часть тела. Когда тело напряжено из-за стресса, мышцы выполняют изометрическое сокращение. Поддержание позы является также результатом изометрических сокращений. Сужения мышц, что действительно производит движение является изотоническими сокращениями. Изотонические сокращения необходимы для наращивания мышечной массы за счет подъема веса.

Мышечный тонус является естественным состоянием, в котором скелетные мышцы остаются во всё время. Мышечный тонус обеспечивает легкое натяжение мышц, чтобы предотвратить повреждение мышц и суставов от резких движений, а также помогает поддерживать осанку тела. Все не повреждённые мышцы поддерживают некоторое количество мышечного тонуса во всё время.

Функциональные типы скелетных мышечных волокон

Cкелетные мышечные волокона, можно разделить на два типа в зависимости от того, как они производят и используют энергию:

I тип — волокна с очень медленным и осторожным сокращением. Они очень устойчивы к усталости, потому что используют аэробное дыхание для производства энергии из сахара. Находятся I типа волокона в мышцах по всему телу для выносливости и осанки, рядом с позвоночником и в регионах шеи.

Волокна типа II разбиты на две подгруппы: II типа А и типа II B.
Тип II волокна А быстрее и сильнее, чем I типа волокона, но не имеют столько же выносливости. Типа II A волокна находятся по всему телу, но особенно в ногах,где они работают, чтобы поддерживать ваше тело на протяжении долгого времени для ходьбы и стояния.

Тип II B — волокна еще быстрее и сильнее, чем II типа А, но еще меньше выносливые. Тип II B волокна немного светлее, чем тип I и тип II А из-за их отсутствия миоглобина — кислородного пигмента. Находятся волокна типа II B по всему телу, но особенно в верхней части, где они дают скорость и силу рукам и груди за счет выносливости.

Мышечный метаболизм и усталость

Мышцы получают энергию из различных источников, в зависимости от ситуации, в которой мышца работает. Мышцы способны использовать аэробное дыхание, когда необходимо произвести от низкого до умеренного уровня силы упражнения. Аэробное дыхание требует кислорода, чтобы произвести около 36-38 молекул АТФ из молекулы глюкозы. Аэробные дыхания является очень эффективным и может продолжаться до тех пор, пока мышца получает достаточное количество кислорода и глюкозы. Когда мы используем мышцы, чтобы произвести высокий уровень силы, они становятся настолько плотными, что находящийся кислород в крови не может войти в мышцу. Это условие приводит к тому, что мышцы используют для выработки энергии брожение молочной кислоты (форма анаэробного дыхания). Анаэробное дыхание менее эффективно аэробного дыхания — только 2 АТФ производится из каждой молекулы глюкозы.
Для того, чтобы мышцы работали в течение более длительного периода времени, мышечные волокна содержат несколько важных энергетических молекул. Миоглобин , красный пигмент содержащийся в мышцах, содержит железо и сохраняет кислород в манере, подобной гемоглобину крови. Кислород из миоглобина позволяет мышцам продолжать аэробное дыхание в отсутствии кислорода. Другой химикат, который помогает мышцам работать — креатинфосфат . Мышцы используют энергию в виде АТФ, происходит превращение АТФ в АДФ, чтобы выпустить свою энергию. Креатинфосфат жертвует свою фосфатную группу АДФ, чтобы включить её в АТФ, с тем, чтобы обеспечить дополнительную энергию для мышц. Наконец, мышечные волокна содержат энергию аккумулирующих гликогенов, больших макромолекул, изготовленных из множества связанной между собой глюкозы. Активные мышцы отщепляют глюкозу от молекул гликогена, чтобы обеспечить внутренний запас топлива.

Мышечная усталость

Когда мышцы исчерпали энергию во время аэробного или анаэробного дыхания, то быстро утомляются и теряют способность сокращаться. Это состояние известно как мышечная усталость . Утомление мышц не говорит о содержании очень малого количества или отсутствия кислорода, глюкозы или АТФ, но вместо этого имеет много продуктов — отходов дыхания, таких как молочная кислота и АДФ. Тело должно принимать дополнительное количество кислорода после физической нагрузки, чтобы заменить кислород, который находился в миоглобине мышечных волокон, а также для питания аэробного дыхания, которое обеспечивает поставки энергии внутри клетки. Восстановление потребления кислорода (кислородное голодание) — это восприятие дополнительного кислорода, который организм должен принять, чтобы восстановить мышечные клетки, их привести в состояние покоя. Это объясняет, почему появляется одышка в течение нескольких минут после напряженной деятельности — ваше тело пытается восстановить себя в нормальное состояние.