Строение и функции нервно-мышечного синапса. Синаптические потенциалы

Нервную систему можно разделить на центральную и периферическую.

Главными функциями нервной системы будут являться:

- сенсорная (обеспечивает восприятие раздражений из внешней или внутренней среды, эти раздражения воспринимаются чувствительными окончаниями),

- проводниковая (проведение нервных импульсов в центральную нервную систему или из нее),

- интегративная функция (объединение тех сигналов, которые поступают в организм и выбор наиболее значимого раздражителя в данный момент, на который будет формироваться ответная реакция)

- рефлекторная функция (большинство ответных реакций проявляется в двигательной форме),

- моторная функция , обеспечивающая эти реакции.

Наряду с двигательными реакциями могут присутствовать секреторные реакции. Эти функции связаны с работой нервных клеток.

Нейрон. В нейроне различают тело клетки и 2 вида отростков (короткие ветвящиеся - дендриты. Предназначены для передачи информации к телу клетки. От тела клетки отходит один длинный отросток - аксон. Аксон образует конечные терминали, которые вступают в контакт с органами) . Тело нервной клетки имеет субклеточные структуру. Эндоплазматическая сеть (гладкая и гранулярная). Гранулы на гранулярной сети - рибосомы, где идет синтез белка. Гранулярная сеть является важным показателем состояния нейрона. В нейроне содержатся нейрофиламенты и нейротрубочки . Нейрофиламенты уходят из тела клетки в отростки. Клетки образуют связь нервной системы с глиальными клетками.

Отростки нервных клеток входят в состав периферических нервов. Нейроны по своей функции могут быть чувствительными (афферентные), двигательные (эфферентные), вставочные и нейросекреторные . Место отхождения аксона от тела клетки называется аксонными холмиком . Эта область нейрона обладает наибольшей чувствительностью.

Строение нервного волокна . Основной частью нервного волокна будет являться осевой цилиндр, который покрыт снаружи плазматической мембраной, а внутри осевого цилиндра находится аксоплазма, в которой проходят нейрофиламенты (микротрубочки) диаметр составляет 10 нанометров, а микротрубочки достигают 23 нанометров.

Диаметр нервного волокна колеблется от 0.5, до 50 микрометров. Осевой цилиндр покрыт оболочкой. Различают 2 разновидности оболочек (швановская и миелиновая оболочки)

В ходе эмбрионального развития осевой цилиндр аксона погружается в складку, образованную швановской клеткой. Таким образом, происходит образование швановской оболочки.

Если нервное волокно имеет только швановскую оболочку, то такие волокна относят к безмиелиновым . У других аксонов швановские клетки начинают закручиваться спиралевидно. При этом вокруг осевого цилиндра формируют слои мембран швановской клетки. Ядро и цитоплазма швановской клетки отходят к периферии. Таким образом формируется миелиновая оболочка , где осевой цилиндр оказывает покрытым миелиновой оболочкой. Миелиновая оболочка покрывает не на всем протяжении, а отдельными муфтами, протяженность которых составляет 1-2 мм. В мягких волокнах на стыке двух соседей остаются участки мембраны, не покрытые миелиновой оболочкой. Эти участки называются перехватами Ренье . Швановские клетки принимают участие в обменных процессах и в росте осевого цилиндра. Миелиновая оболочка образуется из липидов мембран. Она обладает изолирующими свойствами. Нервное волокно приобретает изоляционную оболочку. Она предназначена для проведения нервного импульса.

По аксоплазме и по нитям и трубочкам происходит транспорт веществ . Транспорт может идти в двух направлениях:

От тела клетки - антероградный транспорт .

К телу клетки - ретроградный транспорт .

По скорости переноса веществ.

По аксоплазме (1-2 мм в сутки)

По трубочкам (400 мм с сутки)

Разрыв волокна приводит к тому, что периферическая часть начинает быстро погибать. В ней развиваются процессы дегенерации. Уже через 2-3 дня нервное волокно утрачивает способность проводить возбуждение. Затем происходит распад осевого цилиндра, распадается миелиновая оболочка. И на месте бывшего волокна остается только тяж швановских клеток. Восстановление нервного волокна возможно из центрального отростка. В окончании центрального отростка возникают колбы роста , которые растут на 1 мм за сутки.

Физиологические свойства.

Как клетки возбудимой ткани: возбудимость и проводимость.

Возбудимость нервного волокна - это способность нервного волокна проводить импульс.

Сальваторное проведение нервного импульса.

Скорость проведения в мякотных волокнах будет возрастать, так как используется не вся мембрана. Чем больше диаметр нервного волокна, тем больше протяженность между оболочками.

По мере прохождения импульса не изменяется амплитуда (бездекрементное ). У холоднокровных животных сигнал может угасать.

Для проведения нервного импульса должна быть морфологическая целостность нерва.

Возбуждение проводится с двух сторон.

Закон изолированного проведения . Каждое нервное волокно проводит возбуждение изолированно. Это позволяет не распространяться импульсу в поперечном направлении.

Нервно-мышечный синапс.

Нервно-мышечный синапс - это область контакта нервного волокна с мышцами . Подходя к мышце аксон теряет миелиновую оболочку и распадается на концевые терминали (от 5 до 20) и мембраны осевого цилиндра вступают в контакт с мышечными волокнами и формируют синаптические связки.

В структуре синапса выделяют 3 элемента :

1. Ресенаптическая мембрана (мембрана осевого цилиндра)

2. Постсинаптическая мембрана (производная мембрана мышечного волокна). Эта мембрана образует складки, которые увеличивают ее поверхность.

3. Между пре- и постсинаптической мембраной находится межсинаптическая щель (2-50 нм).

В пресинаптической мембране присутствуют пузырьки, содержащие медиаторы, участвующие в проведении возбуждения. Диаметр пузырьков составляет до 50 нм. В каждом пузырьке находится до 10 000 ацетил-хориновых молекул (1 квант).

Кроме пузырьков в пресинаптической мембране содержатся митохондрии. В них идет синтез медиаторов.

Пресинаптическая мембрана обладает чувствительностью к действию электрического тока. Постсинаптическая мембрана имеет рецепторы, которые называются хоринорецепторами . Их количество в одном синапсе может достигать 40 млн. Эти рецепторы представляют собой интегральные белки, которые воспринимают действие медиатора. При взаимодействии медиатора с рецептором открываются ионные каналы, способные пропускать ионы натрия и калия (больше ионов натрия). Рецепторы также возбуждаются при действии никотина. Эта мембрана не чувствительна к действию электрического тока.

Холиностераза - вызывает разрушение медиатора.

Проведение возбуждения через синапс имеет следующие особенности :

Передача возбуждения происходит только в одном направлении.

В этом проведении возбуждения участвует химический посредник.

Задержка проведения возбуждения.

Курар - блокирует хоринорецептор, что делает невозможным передачу возбуждения.

Бунгаротоксин и кобротоксин необратимо блокируют рецепторы и наступает гибель.

Механизм прохождения возбуждения через синапс.

Потенциал концевой пластики отличается от потенциала нерва следующими принципами:

Не подчиняется закону "все или ничего"

Его амплитуда имеет градуальную зависимость от количества медиатора.

Этот потенциал местный, распространяется медленно, с затуханием, не обладает рефроктерностью и, следовательно, способен к суммации. При достижении величины 25-30 мВ этот потенциал способен вызвать потенциал действия уже в мышечном волокне.

Формирование потенциала действия происходит так же, как при прохождении нервного импульса.

По нервному волокну приходит электрических сигнал. Это вызывает изменение в пресинаптической мембране, что приводит к выделению медиатора, который проходит через межсинаптическую щель. Ацетилхолин вызывает появление потенциала концевой пластинки, который будет рождать потенциал действия в мышечном волокне. Распространение потенциала по мышцам приведет к активации сократительного механизма, которые дадут механический эффект.

Некоторые заболевания вызывают разрушение хоринорецепторов, что приводит к слабости мышц. Если двигательный нерв повреждается, то количество чувствительных рецепторов возрастает.

НЕРВНО-МЫШЕЧНЫЙ СИНАПС

Нервно-мышечный синапс – структура, которая обеспечивает передачу возбуждения с нервного волокна на мышечное. Состоит из пресинаптической мембраны, постсинаптической мембраны и синаптической щели между ними.

Механизм передачи возбуждения – химический. Химическое вещество, которое участвует в передаче возбуждения, называетсямедиатором . Медиатором в нервно-мышечном синапсе скелетных мышц являетсяацетилхолин . Ацетилхолин (АХ) находится в пресинаптическом нервном окончании в виде синаптических пузырьков (квантов).

ЭТАПЫ СИНАПТИЧЕСКОЙ ПЕРЕДАЧИ: (1) возбуждение мембраны пресинаптического нервного окончания приводит к (2) увеличению проницаемости пресинаптической мембраны для ионов кальция (открываются потенциал-чувствительные кальциевые каналы), (3) ионы кальция поступают из тканевой жидкости в нервное окончание. (4) Они необходимы для выделения пузырьков медиатора (путем экзоцитоза). (5) Медиатор (АХ) диффундирует к постсинаптической мембране и (6) взаимодействует с холинорецепторами (белковыми молекулами, входящими в состав постсинаптической мембраны и имеющими высокое химическое сродство к ацетилхолину). (7) В результате взаимодействия АХ с холинорецепторами открываются ионные каналы в постсинаптической мембране мышечного волокна. (Особенность ионных каналов постсинаптической мембраны: они хемо-чувствительные и проницаемы как для натрия, так и для калия). (8) За счет движения ионов натрия в клетку и движения ионов калия из клетки происходит генерация постсинаптического потенциала – потенциала концевой пластинки (ПКП). ПКП имеет свойствалокального ответа :

зависит от количества медиатора, способен к суммации. Его амплитуда 30-70 мв. (9) ПКП увеличивает возбудимость мембраны мышечного волокна (вызывает деполяризацию до критического уровня) и в околосинаптической зоне возникает ПД, который затем распространяется вдоль всего мышечного волокна. (10) Ацетилхолин разрушается с помощью фермента ацетилхолинэстеразы (АХЭ) на холин и ацетат. Таким образом, холинорецепторы быстро освобождаются от медиатора. Холин возвращается в нервное окончание (с помощью специального активного транспорта) и используется для синтеза новых порций медиатора.

ОСОБЕННОСТИ ПЕРЕДАЧИ ВОЗБУЖДЕНИЯ ЧЕРЕЗ ХИМИЧЕСКИЙ СИНАПС:

(1) одностороннее проведение (только от нервного волокна к мышечному волокну);

(2) синаптическая задержка (время, необходимое на выделение медиатора, диффузию его и т.д.)

(3) низкая лабильность (синапс способен проводить только 100 имп в сек)

(4) высокая утомляемость (связана с истощением запасов медиатора)

(5) высокая чувствительность к действию химических блокаторов (кураре и др.), которые связываются с холинорецепторами и нарушают нервно-мышечную передачу возбуждения.

Контрольные вопросы по теме « Нервно-мышечный синапс»

    Что такое нервно-мышечный синапс?

    Из каких частей состоит нервно-мышечный синапс?

    Каков механизм передачи возбуждения через нервно-мышечный синапс?

    Как называется химическое вещество, необходимое для передачи возбуждения в синапсе?

    В каком виде накапливается медиатор в пресинаптическом нервном окончании?

    Как происходит выделение медиатора? Какие ионы необходимы для этого?

    Что такое холинорецепторы? Где они расположены?

    Что происходит в результате взаимодействия ацетилхолина с холинорецепторами?

    Назовите особенности ионных каналов постсинаптической мембраны.

    Что такое ПКП? Какие ионные токи участвуют в его формировании?

    Что такое ПКП: импульс или локальный ответ?

    Назовите свойства ПКП.

    Что такое ацетилхолинэстераза? Какое значение имеет АХЭ?

    Где происходит синтез ацетилхолина?

    Почему синаптическая передача односторонняя?

    Что такое синаптическая задержка?

    Почему синапс имеет низкую лабильность?

    Почему утомление в синапсе развивается быстрее, чем в нервном или мышечном волокне?

    Опишите механизм действия кураре на нервно-мышечную передачу.


Нервно-мышечный синапс - соединение концевой ветви аксона мотонейрона спинного мозга с мышечной клеткой. Соединение состоит из предсинаптических структур, образованных концевыми ветвями аксона мотонейрона и постсинаптических структур, образованных мышечной клеткой. Предсинаптические и постсинаптические структуры разделены синаптической щелью. (Предсинаптические структуры: концевая ветвь аксона, концевая пластинка концевой ветви (аналог синаптической бляшки), предсинаптическая мембрана (концевой пластинки).

Постсинаптические структуры: постсинаптическая мембрана (мышечной клетки), субсинаптическая мембрана (постсинаптической мембраны). По структуре и функции нервно-мышечный синапс является типичным химическим синапсом.

Синапсы могут быть между двумя нейронами (межнейронные), между нейроном и мышечным волокном (нервно-мышечные), между рецепторными образованиями и отростками чувствительных нейронов (рецепторно-нейронные), между отростками нейрона и другими клетками (железистыми).

В зависимости от локализации, функции, способа передачи возбуждения и природы медиатора, синапсы делятся на центральные и периферические, возбуждающие и тормозные, химические, электрические, смешанные, холинергические или адренергические.

Синапс адренергический - синапс, медиатором в котором является норадреналин. Различают α1-, β1-, и β2 - адренергический синапсы. Они образуют нейроорганные синапсы симпатической нервной системы и синапсы ЦНС. Возбуждение α- адренореактивных синапсов вызывает сужение сосудов, сокращение матки; β1- адренореактивных синапсов - усиление работы сердца; β2 - адренореактивных - расширение бронхов.

Синапс холинергический - медиатором в нем является ацетилхолин. Они делятся на синапсы н-холинергические и м-холинергические.

В м-холинергическом синапсе постсинаптическая мембрана чувствительна к мускарину. Эти синапсы образуют нейроорганные синапсы парасимпатической системы и синапсы ЦНС.

В н-холинергическом синапсе постсинаптическая мембрана чувствительна к никотину. Этот вид синапсов образуют нервно-мышечные синапсы соматической нервной системы, ганглионарные синапсы, синапсы симпатической и парасимпатической нервной системы, синапсы ЦНС.

Синапс химический - в нем возбуждение от пре- к постсинаптической мембране передается с помощью медиатора. Передача возбуждения через синапс химический отличается большей специализированностью, чем через синапс электрический.

Синапс электрический - в нем возбуждение от пре- к постсинаптической мембране передается электрическим путем, т.е. совершается эфаптическая передача возбуждения - потенциал действия достигает пресинаптического окончания и далее распространяется по межклеточным каналам, вызывая деполяризацию постсинаптической мембраны. В электрическом синапсе медиатор не вырабатывается, синаптическая щель мала (2 - 4 нм) и в ней имеются белковые мостики-каналы, шириной 1 - 2 нм, по которым движутся ионы и небольшие молекулы. Это способствует низкому сопротивлению постсинаптической мембраны. Этот вид синапсов встречается значительно реже, чем химические и отличаются от них большей скоростью передачи возбуждения, высокой надежностью, возможностью двухстороннего проведения возбуждения.

Синапс возбуждающий - синапс, в котором возбуждается постсинаптическая мембрана; в ней возникает возбуждающий постсинаптический потенциал и пришедшее к синапсу возбуждение распространяется дальше.

Синапс тормозной

1. Синапс, на постсинаптической мембране которого возникает тормозной постсинаптический потенциал, и пришедшее к синапсу возбуждение не распространяется дальше;

2. возбуждающий аксо- аксональный синапс, вызывающий пресинаптическое торможение.

Синапс межнейронный - синапс между двумя нейронами. Различают аксо-аксональные, аксо-соматические, аксо-дендрические и дендро-дендрические синапсы.

Синапс нервно-мышечный - синапс между аксоном мотонейрона и мышечным волокном.

Несмотря на определенные морфологические и функциональные различия (о чем сказано выше), общие принципы ультраструктуры синапсов одинаковы.

Синапс состоит из трех основных частей: пресинаптической мембраны, постсинаптической мембраны и синаптической щели.

Окончание аксона двигательного нейрона разветвляется на множество концевых нервных веточек, не имеющих миелиновой оболочки. Утолщенное окончание пресинаптического аксона (его мембраны) и составляет пресинаптическую мембрану синапса. Пресинаптическое окончание содержит митохондрии, которые поставляют АТФ, а также множество субмикроскопических образований - пресинаптических пузырьков, величиной 20 - 60 нм, состоящих из мембраны, содержащей медиатор. Пресинаптические пузырьки необходимы для накопления медиатора. В нервно-мышечном синапсе ветвления нервного волокна вдавливают мембрану мышечного волокна, которая в этом участке образует сильноскладчатую постсинаптическую мембрану или двигательную концевую пластинку.

Между пресинаптической и постсинаптической мембранами расположена синаптическая щель, ширина которой составляет 50 - 100 нм.

Область мышечного волокна, участвующую в образовании синапса, называют концевой двигательной пластинкой или постсинаптической мембраной синапса.

Передатчиком возбуждения, пришедшего по нервным окончаниям в нервно-мышечный синапс, служит медиатор ацетилхолин .

Когда под действием нервного импульса (потенциала действия) происходит деполяризация мембраны нервного окончания, пресинаптические пузырьки вплотную сливаются с ней. При этом в одной из точек пресинаптической мембраны возникает все увеличивающееся отверстие, через которое в синаптическую щель выбрасывается содержимое пузырька (ацетилхолин).

Ацетилхолин выбрасывается порциями (квантами) по 4 10 4 молекул, что соответствует содержимому нескольких пузырьков. Один нервный импульс вызывает синхронное выделение 100-200 порций медиатора менее чем за 1 мс. Всего же запасов ацетилхолина в окончании хватает на 2500-5000 импульсов.

Таким образом, основное назначение пресинаптической мембраны состоит в синтезе и регулируемом нервным импульсом выбросе медиатора ацетилхолина в синаптическую щель.

Молекулы ацетилхолина диффундируют через щель и достигают постсинаптической мембраны. Последняя обладает высокой чувствительностью к медиатору и невозбудима по отношению к электрическому току. Высокая чувствительность мембраны к медиатору обусловлена тем, что в ней находятся специфические рецепторы - молекулы липопротеиновой природы. Число рецепторов - их называют холинорецепторами - составляет примерно 13000 на 1мкм 2 ; они отсутствуют в других участках мышечной мембраны. Взаимодействие медиатора с рецептором (две молекулы ацетилхолина взаимодействуют с одной молекулой рецептора) вызывает изменение конформации последнего в результате чего открываются хемовозбудимые ионные каналы в мембране. Происходит перемещение ионов (поток Nа+ внутрь намного превышает выход К+ наружу, в клетку поступают ионы Са++) и возникает деполяризация постсинаптической мембраны от 75 до 10 мВ. Возникает потенциал концевой пластинки (ПКП) или возбуждающий постсинаптический потенциал (ВПСП).

Время от момента появления нервного импульса в пресинаптическом окончании до возникновения ПКП называется синаптической задержкой . Она составляет 0,2-0,5 мс.

Величина ПКП зависит от числа молекул ацетилхолина, связанных с рецепторами постсинаптической мембраны, т.е. в отличие от потенциала действия ПКП градуален.

Для восстановления возбудимости постсинаптической мембраны необходимо исключить действие деполяризирующего агента - ацетилхолина. Эту функцию выполняет локализованный в синаптической щели фермент ацетилхолинэстераза , которая гидролизует ацетилхолин до ацетата и холина. Проницаемость мембраны возвращается к исходному уровню, и мембрана реполяризуется. Этот процесс идет очень быстро: весь выделившийся в щель ацетилхолин расщепляется за 20 мс. Некоторые фармакологические или токсические агенты (алколоид физостигмин, органические фторфосфаты), ингибируя ацетилхолинэстеразу, удлиняют период ПКП, что вызывает длительные и частые потенциалы действия и спастические сокращения мышц в ответ на одиночные импульсы мотонейронов. Образовавшиеся продукты расщепления - ацетилхолин - большей частью транспортируется обратно в пресинаптические окончания, где используются в ресинтезе ацетилхолина при участии фермента холин-ацетилтрансферазы.

Ацетилхолин выделяется не только под влиянием нервного импульса, но и в покое. В этом случае он выделяется спонтанно в очень небольшом количестве. В результате этого начинается незначительная деполяризация постсинаптической мембраны. Такая деполяризация получила названиеминиатюрных постсинаптических потенциалов , т.к. они по своей величине не превышают 0,5 мВ.

В гладких мышцах нервно-мышечные синапсы построены проще, чем в скелетных. Тонкие пучки аксонов и их одиночные веточки, следуя между мышечными клетками, образуют расширения, содержащие пресинаптические пузырьки с медиатором ацетилхолином или норадреналином.

В гладких мышцах передача возбуждения в нервно-мышечном синапсе осуществляется разными медиаторами. Например, для мышц желудочно-кишечного тракта, бронхов, медиатором служит ацетилхолин, а для мышц кровеносных сосудов - норадреналин. Гладкие мышцы кровеносных сосудов на постсинаптической мембране имеют два вида рецепторов: α-адренорецепторы и β-адренорецепторы. Стимуляция α-адренорецепторов ведет к сокращению гладких мышц сосудов, а стимуляция β-адренорецепторов опосредует расслабление сосудистых гладких мышц. По нервным волокнам к гладким мышцам поступают редкие импульсы, примерно не чаще 5-7 имп/с. При более частых, например, свыше сорока - пятидесяти импульсов в секунду, наступает торможение пессимального типа. Гладкие мышцы иннервируются возбуждающими и тормозными нервами. Из окончаний тормозных нервов выделяются тормозные медиаторы, взаимодействующие с рецепторами постсимпатической мембраны. В гладких мышцах, возбуждаемых ацетилхолином, тормозным медиатором служит норадреналин, а для возбуждаемых норадреналином тормозным медиатором является ацетилхолин.

Возникновение и передача возбуждения в рецепторах

Рецепторы по происхождению могут быть первичными (первичночувствующими) и вторичными (вторичночувствующими). В первичных рецепторах воздействие воспринимается непосредственно свободными или несвободными (более специализированными) нервными окончаниями чувствительных нейронов (рецепторы кожи, скелетных мышц, внутренних органов, органов обоняния).

Во вторичных рецепторах между раздражителем и окончанием чувствительного нейрона располагаются специализированные рецепторные клетки эпителиальной или глиальной природы.

Механизм генерации нервного импульса в рецепторах и его передачи по нервному волокну как в первичных, так и во вторичных рецепторах одинаков, хотя форма взаимодействия адекватного раздражителя с мембраной рецептора может быть различной (деформация мембраны у механорецепторов, возбуждение квантами света фотопигмента мембраны у фоторецепторов и т.п.). Однако во всех случаях это приводит к одному результату: повышению ионной проницаемости мембраны, проникновению натрия внутрь клетки, деполяризации мембраны и генерации так называемого рецепторного потенциала (РП).

Местом возникновения РП может быть либо само нервное окончание (в первичных рецепторах), либо отдельные рецепторные клетки, образующие с чувствительными окончаниями химические синапсы (во вторичных рецепторах).

Рецепторный потенциал проявляется в снижении мембранного потенциала покоя, т.е. частичной деполяризации мембраны (с 80 до - 30 мВ). Это снижение потенциала строго локально и оно возникает только в том участке мембраны, где действует раздражитель, пропорционально его интенсивности. В первичных рецепторах РП, превысивший пороговозбуждения, трансформируется в потенциал действия нервного волокна. Во вторичных рецепторах РП вызывает высвобождение химического медиатора, деполяризующего мембрану постсинаптического нервного волокна. В последнем возникает генераторный потенциал, переходящий в потенциал действия.

В принципе возникновение и передача возбуждения в рецепторах осуществляется тем же механизмом и в той же последовательности, что и в нервно-мышечном синапсе.

Однако возникающие здесь нервные импульсы распространяются центростремительно и несут информацию в анализирующие (сенсорные) центры ЦНС.

Всем рецепторам присуще свойство адаптации к действию раздражителя. Скорость адаптации у разных рецепторов различна. Одни из них (рецепторы прикосновения) адаптируются очень быстро, другие (хеморецепторы сосудов, рецепторы растяжения мышц) - очень медленно.



Физиология нервно-мышечного синапса

Синапс (греч. synapsis - соединение) - это специализированная структура, обеспечивающая передачу сигнала от клетки к клетке. Посредством синапса реализуется действие многих фармакологических препаратов.

Структурно-функциональная организация. Каждый синапс имеет пре - и постсинаптическую мембраны и синаптическую щель (рис. 17).

Рис. 17. Нервно-мышечный синапс скелетной мышцы: 1 – ветвь аксона; 2 – пресинаптическое окончание аксона; 3 – митохондрия; 4 – синаптические пузырьки, содержащие ацетилхолин; 5 – синаптическая щель; 6 – молекулы медиатора в синаптической щели; 7 – постсинаптическая мембрана мышечного волокна с N-холинорецепторами

Пресинаптическая мембрана нервно-мышечного синапса представляет собой часть мембраны пресинаптического окончания аксона мотонейрона. Через нее осуществляется выброс (экзоцитоз) медиатора (лат. mediator - посредник) в синаптическую щель. В нервно-мышечном синапсе медиатором является ацетилхолин. Медиатор пресинаптического окончания содержится в синаптических пузырьках (везикулах), диаметр которых составляет около 40 нм. Они образуются в комплексе Гольджи, с помощью быстрого аксонного транспорта доставляются в пресинаптическое окончание, где заполняются медиатором и АТФ. В пресинаптическом окончании содержится несколько тысяч везикул, в каждой из которых имеется от 1 тыс. до 10 тыс. молекул химического вещества.

Постсинаптическая мембрана (концевая пластинка в нервно-мышечном синапсе) - это часть клеточной мембраны иннервируемой мышечной клетки, содержащая рецепторы, способные связывать молекулы ацетилхолина. Особенность этой мембраны: множества мелких складок, увеличивающих ее площадь и количество рецепторов на ней до 10-20 млн в одном синапсе.

Синаптическая щель в нервно-мышечном синапсе имеет ширину в среднем 50 нм. Она содержит межклеточную жидкость, ацетилхолинэстеразу и мукополисахаридное плотное вещество в виде полосок, мостиков, в совокупности образующих базальную мембрану, соединяющую пре- и постсинаптическую мембраны.

Механизмы синаптической передачи включают три основных этапа (рис. 18).

Рис. 18. Механизм проведения импульса через химический синапс: 1-8 – этапы процесса (Чеснокова, 2007)

Первый этап - процесс выброса медиатора в синаптическую щель, который запускается посредством ПД пресинаптического окончания. Деполяризация его мембраны ведет к открытию потенциалуправляемых Са-каналов. Са 2+ входит в нервное окончание согласно электрохимическому градиенту. Часть медиатора в пресинаптическом окончании локализуется на пресинаптической мембране изнутри. Са 2+ активирует экзоцитозный аппарат пресинапса, представляющий собой совокупность белков (синапсин, спектрин и др.), пресинаптического окончания, активация которых обеспечивает выброс ацетилхолина посредством экзоцитоза в синаптическую щель. Количество высвобождаемого ацетилхолина из пресинаптического окончания пропорционально в четвертой степени количеству поступившего туда Са 2+ . На один ПД из пресинаптического окончания нервно-мышечного синапса выбрасывается 200-300 квантов (везикул) медиатора.

Второй этап - диффузия ацетилхолина в течение 0,1-0,2 мс к постсинаптической мембране и действие его на N-холинорецепторы (стимулируются также никотином, вследствие чего и получили свое название). Удаление ацетилхолина из синаптической щели осуществляется путем разрушения его под действием ацетилхолинэстеразы, расположенной в базальной мембране синаптической щели, в течение нескольких десятых долей миллисекунды. Около 60% холина захватывается обратно пресинаптическим окончанием, что делает синтез медиатора более экономичным, часть ацетилхолина рассеивается. В промежутках между ПД из пресинаптического окончания происходит спонтанное выделение 1- 2 квантов медиатора в синаптическую щель в течение 1 с, формируя так называемые миниатюрные потенциалы (0,4-0,8 мВ). Они поддерживают высокую возбудимость иннервируемой клетки в условиях функционального покоя и выполняют трофическую роль, а в ЦНС - способствуют поддержанию тонуса ее центров.

Третий этап - взаимодействие ацетилхолина с N-холинорецепторами постсинаптической мембраны, в результате чего открываются ионные каналы на 1 мс и, вследствие преобладания входа N + в клетку, происходит деполяризация постсинаптичедкой мембраны (концевой пластинки). Эту деполяризацию в нервно-мышечном синапсе называют потенциалом концевой пластинки (ПКП) (рис. 19).

Особенностью нервно-мышечного синапса скелетного мышечного волокна является то, что при одиночной его активации формируется ПКП большой амплитуды (30-40 мВ), электрическое поле которого вызывает генерацию ПД на мембране мышечного волокна вблизи синапса. Большая амплитуда ПКП обусловлена тем, что нервные окончания делятся на многочисленные веточки, каждая из которых выбрасывает медиатор.

Рис. 19. Потенциал концевой пластинки (Шмидт, 1985): КП – критический потенциал; ПД – потенциал действия; А – ПКП в нормальной мышце; Б – ослабленный ПКП в курарезированной мышце; стрелками указан момент нанесения стимула

Характеристика проведения возбуждения в химических синапсах . Одностороннее проведение возбуждения от нервного волокна к нервной или эффекторной клетке, так как пресинаптическое окончание чувствительно только к нервному импульсу, а постсинаптическая мембрана - к медиатору.

Неизолированное - возбуждение рядом расположенных постсинаптических мембран суммируется.

Синаптическая задержка в передаче сигнала к другой клетке (в нервно-мышечном синапсе 0,5-1,0 мс), что связано с высвобождением медиатора из нервного окончания диффузией его к постсинаптической мембране и возникновением постсинаптических потенциалов, способных вызвать ПД.

Декрементность (затухание ) возбуждения в химических синапсах при недостаточном выделении медиатора из пресинаптических окончаний в синаптические щели.

Низкая лабильность (в нервно-мышечном синапсе составляет 100 Гц), которая в 4 - 8 раз ниже лабильности нервного волокна. Это объясняется синаптической задержкой.

Проводимость нервно-мышечного синапса (как и химических синапсов ЦНС) угнетается или, наоборот, стимулируется различными веществами .

Например, кураре и курареподобные вещества (диплацин, тубокурарин) обратимо связываются с N-холинорецепторами постсинаптической мембраны, блокируют действие на нее ацетилхолина и передачу в синапсе. Напротив, некоторые фармакологические препараты, например прозерин, подавляют активность ацетилхолинэстеразы, способствуя умеренному накоплению ацетилхолина и облегчению синаптической передачи, что используется в лечебной практике.



Утомляемость (синаптическая депрессия) - ухудшение проводимости вплоть до полной блокады проведения возбуждения при длительном функционировании синапса (главная причина - истощение медиатора в пресинаптическом окончании).

Вопросы для самоконтроля

1.Каков механизм распространения возбуждения по нервному волокну? Какова роль перехватов Ранвье в проведении возбуждения по миелинизированному нервному волокну?

2.В чем преимущество скачкообразного (сальтаторного) распространения возбуждения над непрерывным его проведением вдоль мембраны волокна?

3.В чем физиологическое значение изолированного проведения возбуждения по нервному волокну?

4.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе А? Какова скорость проведения возбуждения по ним?

5.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе В? Какова скорость проведения по ним?

6.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе С? Какова скорость проведения возбуждения по ним?

7.Перечислите структуры нервно-мышечного синапса (скелетная мышца). Что называют концевой пластинкой?

8.Перечислите последовательность процессов, ведущих к освобождению медиатора из пресинаптической мембраны в синаптическую щель при передаче возбуждения в синапсе.

9. Локальным потенциалом или распространяющимся возбуждением является потенциал концевой пластинки?

10.Что такое миниатюрные потенциалы концевой пластинки, каков механизм их возникновения?

11.В чем заключается трофическое влияние нерва на мышцу, осуществляемое через нервно-мышечный синапс?

12.Какие вещества являются медиаторами в нервно-мышечных синапсах гладкой и поперечнополосатой мышц?

13.Что такое сенсорный рецептор?

14.На какие две группы делятся сенсорные рецепторы по скорости адаптации? Назовите рецепторы, относящиеся к каждой из них.

15.Что понимают под первичными и вторичными рецепторами?

16.Перечислите основные свойства рецепторов.

17.Что называют адаптацией рецепторов? Как изменяется частота импульсов в афферентном нервном волокне при адаптации рецептора?

18.Назовите локальные потенциалы, возникающие при возбуждении первичных и вторичных рецепторов.

19.Рецепторный потенциал, где он возникает, каково его значение?

20.Генераторный потенциал, где он возникает, каково его значение?

21.Где возникает потенциал действия при возбуждении первичного сенсорного рецептора?

22. Где возникает потенциал действия при возбуждении вторичного сенсорного рецептора?

Физиология мышц

1.3.1. Структурно­функциональная характеристика скелетной мышцы

Мышцы подразделяют на поперечнопо­лосатые (скелетная и сердечная ) и гладкие (сосуды и внутренние органы, кроме сердца).

Скелетная мышца состоит из мышечных волокон , изолированных в структурном и функциональном отношении друг от Друга, которые представляют собой вытянутые многоядерные клетки. Толщина волокна составляет 10-100 мкм, а его длина варьирует в пределах от нескольких миллиметров до нескольких сантиметров. Количество мышечных волокон, установившись постоянным на 4-5-м месяце постнатального онтогенеза, в последующем не изменяется; с возрастом изменяются (увеличиваются) лишь их длина и диаметр.

Назначение основных структурных элементов. Характеристика основных элементов мышечного волокна. От клеточной мембраны мышечного волокна (сарколеммы) вглубь отходят многочисленные поперечные инвагинации (Т-трубочки ), которые обеспечивают ее взаимодействие с саркоплазматическим ретикулулом (СПР ) (рис. 20).

Рис. 20. Взаимоотношение клеточной мембраны (1), поперечных трубочек (2), боковых цистерн (3) и продольных трубочек (4) саркоплпзматическаого ретикулума, сократительных белков (5): А – в состоянии покоя; Б – при сокращении мышечного волокна; точками обозначены ионы Ca 2+

СПР представляет собой систему связанных друг с другом цистерн и отходящих от них в продольном направлении канальцев, расположенных между миофибриллами. Терминальные (концевые) цистерны СПР примыкают к Т-трубочкам, формируя так называемые триады . В цистернах содержится Са 2+ , играющий важную роль в мышечном сокращении. В саркоплазме имеются внутриклеточные элементы: ядра, митохондрии, белки (в том числе миоглобин), капельки жира, гранулы гликогена, фосфатсодержащие вещества, различные малые молекулы и электролиты.

Миоибриллы - субъединицы мышечного волокна. В одном мышечном волокне может насчитываться более 2 тыс. миофибрилл, их диаметр 1-2 мкм. В одиночной миофибрилле содержится 2-2,5 тыс. протофибрилл - параллельно расположенных нитей белка (тонкие - актин, толстые - миозин ). Актиновые нити состоят из двух субъединиц, скрученных в виде спирали. В состав тонких нитей входят также регуляторные белки - тропомиозин и тропонин (рис. 21).

Рис. 21. Взаимное расположение структурных элементов миофибрилл при их расслаблении (А,Б) и сокращении (В)

Эти белки в невозбужденной мышце препятствуют взаимосвязи актина и миозина, поэтому мышца в покое находится в расслабленном состоянии. Миофибриллы включают в себя последовательно соединенные блоки - саркомеры (Б), отделенные друг от друга Z-полосками. Саркомер (длина 2-Змкм) является сократительной единицей мышечного волокна; при длине 5см оно включает в себя около 20 тыс. последовательно соединенных саркомеров. Миофибриллы отдельного мышечного волокна связаны таким образом, что расположение саркомеров совпадает, и это создает картину поперечной исчерченности волокна при наблюдении в световом микроскопе (рис. 22).

Рис. 22. Саркомер миоцита скелетной мышцы (A. Vander, J. Sherman, D. Luciano, 2004)

Элементы саркoмера (см. рис. 21). Миозиновые протофибриллы образуют наиболее темную часть саркомера - А-диск (анизотропный, он сильно поляризует белый свет). Более светлый участок в центре А-диска называют Н-зоной . Светлый участок саркомера между двумя А-дисками называют 1-диском (изотропный, почти не поляризует свет). Он образован актиновыми протофибриллами, идущими в обе стороны от Z-полосок. Каждый саркомер имеет два набора тонких нитей, прикрепленных к Z-полоскам, и один комплект толстых нитей, сосредоточенных в А-диске. В расслабленной мышце концы толстых и тонких филаментов в разной степени перекрывают друг друга на границе между А- и 1-дисками.

Классификация мышечных волокон:

По структурно-функциональным свойствам и цвету выделяют две основные группы мышечных волокон: быстрые и медленные.

Белые (быстрые) мышечные волокна содержат больше миофибрилл и меньше - митохондрий, миоглобина и жиров, но больше гликогена и гликолитических ферментов; эти волокна называют гликолитическими . Капиллярная сеть, окружающая эти волокна, относительно редкая. Скорость рабочего цикла у данных волокон примерно в 4 раза больше, чем у медленных, что объясняется более высокой АТФазной активностью быстрых волокон, но они обладают малой выносливостью. У белых мышечных волокон число нитей актина и миозина больше, чем у красных, поэтому они толще и сила их сокращения больше, чем у красных волокон.

Красные мышечные волокна содержат много митохондрий, миоглобина , жирных кислот. Эти волокна окружены густой сетью кровеносных капилляров, они имеют меньший диаметр. Митохондрии обеспечивают высокий уровень окислительного фосфорилирования, поэтому данные волокна называют оксидативными. Красные мышечные волокна подразделяются на две подгруппы: быстрые и медленные . Медленные волокна могут выполнять работу в течение относительно продолжительного периода времени; утомление в них развивается медленнее. Они более приспособлены к тоническим сокращениям. Красные быстрые волокна по скорости утомления занимают промежуточное положение между белыми и красными медленными. Скорость их сокращения близка к скорости сокращения белых волокон, что также объясняется высокой АТФазной активностью миозина красных быстрых волокон.

Также имеется незначительное число истинных тонических мышечных волокон; на них локализуется по 7-10 синапсов, принадлежащих, как правило, нескольким мотонейронам, например, в глазодвигательных мышцах, мышцах среднего уха. ПКП этих мышечных волокон не вызывают генерации ПД в них, а непосредственно запускают мышечное сокращение.

Группа мышечных волокон, двигательную (нейромоторную) единицу. В мышцах, совершающих быстрые и точные движения, например в глазодвигательных, нейромоторные единицы состоят из 3-5 мышечных волокон. В мышцах, осуществляющих менее точные движения (например, мышцы туловища и конечностей), двигательные единицы включают сотни и тысячи мышечных волокон. Большая двигательная единица, по сравнению с малой, включает крупный мотонейрон с относительно толстым аксоном, который образует большое число концевых веточек в мышце и, следовательно, иннервирует большое число мышечных волокон. Все мышечные волокна одной двигательной единицы, независимо от их количества, относятся к одному типу. Все скелетные мышцы по своему составу являются смешанными, т.е. образованы красными и белыми мышечными волокнами.

Специфическим свойством всех мышц является сократимость - способность сокращаться, т.е. укорачиваться или развивать напряжение. Реализация этой способности осуществляется с помощью возбуждения и его проведения по мышечному волокну (свойства соответственно возбудимости и проводимости).

Скелетные мышцы не обладают автоматией, управляются организмом произвольно импульсацией из ЦНС, поэтому их называют также произвольными . Гладкие мышцы по собственному желанию не сокращаются, поэтому их называют также непроизвольными, но они обладают автоматией.

Функции скелетной мышцы :

Обеспечение двигательной активности организма - поиск и добывание воды и пищи, ее захват, жевание, глотание, оборонительные реакции, трудовая деятельность - физическая и творческая работа художника, писателя, ученого, композитора в конечном итоге выражается в движении: рисование, письмо, игра на музыкальном инструменте и т.п.

Обеспечение дыхания (движений грудной клетки и диафрагмы).

Коммуникативная функция (устная и письменная речь, мимика и жесты).

Участие в процессах терморегуляции организма с помощью изменения интенсивности сократительного термогенеза.

Пресинаптическая мембрана нервно-мышечного синапса представляет собой часть мембраны пресинаптического окончания аксона мотонейрона, ограничивающая синаптическую щель. Через нее осуществляется выделение (экзоитоз) медиатора в синаптическую щель. Медиатор пресинаптического окончания содержится в синаптических пузырьках(везикулах) диаметром 40 нм. Они образуются в комплесе Гольджи, с помощью быстрого прямого аксонного транспорта доставляются в пресинаптическое окончание и там заполняются медиатором и АТФ. В нервно-мышечном синапсе медиатором является ацетилхолин, который образуется из ацетилкоэнзима А и холина под действием фермента холинацетилтрансферазы. Везикулы расположены преимущественно вблизи периодических утолщений пресинаптической мембраны, называемых активными зонами. В неактивном синапсе везикулы с помощью белка синапсина связаны с белками цитоскелета,что обеспечивает им иммобилизацию и резервирование. Важными структурами пресинаптического окончания являются митохондрии, осуществляющие энергетическое обеспечение процесса синаптической передачи, цистерны гладкой ЭПС, содержащие депонированный ион Са, микротрубочки и микрофиламенты, участвующие во внутриклеточном передвижении везикул.

Синаптическая щель в нервно-мышечном синапсе имеет ширину в среднем 50 нм. Она содержит межклеточную жидкость и мукополисахаридное плотное вещество в виде полосок, мостиков, которое называется базальной мембраной и содержит ацетилхолинэстеразу.

Постсинаптическая мембрана содержит рецепторы,способные связывать молекулы медиатора. Ее особенностью является наличие мелких складок, которые образуют карманы, открывающиеся в синаптическую щель.

Таким образом, основными этапами передачи возбуждения в нервно-мышечном синапсе являются:

1) возбуждение мотонейрона, распространение потенциала действия на пресинаптическую мембрану;

2) повышение проницаемости пресинаптической мембраны для ионов кальция, ток кальция в клетку, повышение концентрации кальция в пресинаптическомокончаниии;

3) слияние синаптических пузырьков с пресинаптической мембраной в активной зоне, экзоцитоз, поступление медиатора в синаптическую щель;

4) диффузия ацетилхолина к постсинаптической мембране, присоединение его к N-холинорецепторам, открытие хемозависимых ионных каналов;

5) преобладающий ионный ток натрия через хемозависимые каналы, образование надпорогового потенциала концевой пластинки;

6) возникновение потенциалов действия на мышечной мембране;

7) ферментативное расщепление ацетилхолина, возвращение продуктов расщепления в окончание нейрона, синтез новых порций медиатора.

Миорелаксанты- лекарственные средства, снижающие тонус скелетной мускулатуры с уменьшением двигательной активности вплоть до полного обездвиживания.

Механизм действия - блокада Н-холинорецепторов в синапсах прекращает подачу нервного импульса к скелетным мышцам, и мышцы перестают сокращаться. Расслабление идет снизу вверх, от кончиков пальцев ног до мимических мышц. Последней расслабляется диафрагма. Восстановление проводимости идет в обратном порядке.

По особенностям взаимодействия с рецепторами миорелаксанты делятся на две группы:

Деполяризирующие миорелаксанты - при контакте с рецепторами вызывают стойкую деполяризацию мембраны синапса, сопровождающуюся кратковременным хаотичным сокращением мышечных волокон (миофасцикуляции), переходящим в миорелаксацию. При стойкой деполяризации нервно-мышечная передача прекращается. Миорелаксациянепродолжительна, происходит за счет удержания открытыми мембранных каналов и невозможности реполяризации. Метаболизируютсяпсевдохолинэстеразой, выводятся почками

Недеполяризирующиемиорелаксанты - блокируют рецепторы и мембранные каналы без их открытия, не вызывая деполяризацию

20в. Физиологические свойства и особенности гладких мышц

Основные функции мышечной ткани:

1.двигательная – обеспечение движения

2.статическая – обеспечение фиксации, в том числе и в определенной позе

3.рецепторная – в мышцах имеются рецепторы, позволяющие воспринимать собственные движения

4.депонирующая – в мышцах запасаются вода и некоторые питательные вещества.

Физиологические свойства:

Сократимость. Сокращение гладкой мышцы определяется особым характером распостранения возбуждения. Группа клеток взаимодействующих посредством нексусов и своих электрических полей, формирует пучок, который является структурно-функциональной единицей гладкой мышцы и сокращается как единое целое.большая продолжительность сокращения; Время сокращения гладкомышечных волокна в несколько сотен раз больше, чем поперечно. Благодаря этому гладкие мышцы приспособлены к длительному сокращению без больших затрат энергии и медленно устают;

Спонтанная миогенная активность. В отличие от скелетных мышц гладкие мышцы желудка, кишечника, матки, мочеточников, кровеносных сосудов и других внутренних органов развивают спонтанно-тетаноподобные сокращения.Эта спонтанная активность возникает в особых мышечных клетках, которые выполняют функцию водителя ритма, то есть обладают способностью до автоматизма. От этих клеток ПД распространяется со скоростью примерно 0.1 м/с через Нексус на соседние волокна и охватывает всю мышцу. Например, перистальтические сокращения желудка возникают с частотой 3 раза за 1 мин, сегментарные и маятниковые движения в толстом кишечнике - с частотой -20 раз за 1 мин.

Пластичность - способность сохранять длину, приобретенную при растяжении, без изменения напряжения. Это свойство имеет очень большое значение для нормальной деятельности внутренних органов, например мочевого пузыря.

высокая чувствительность к физиологически активных веществ, в частности к медиаторам вегетативной нервной системы - ацетилхолина, а также - серотонина, брадикинина, простагландинов. Указанные биологически активные вещества могут как возбуждать, так и тормозить гладкомышечные волокна. Это зависит от того, какой процесс - деполяризацию, или гиперполяризацию вызывает данное вещество на мембране клетки. Так, например, ацетилхолин вызывает сокращение гладких мышц большинства органов, но способствует расслаблению стенок сосудов некоторых органов. Характер ответы гладких мышц на действие физиологически активного вещества зависит от того, ионные каналы она открывает в свою очередь детерминировано спецификой мембранных рецепторов.

Возбудимость. Потенциал покоя 60-70 мВ. Для миоцитов,обладающих спонтанной элекрической активностью 30-60. Положительный пик ПД меньше, чем в поперечнополосатых меньше, чем в поперечнополосатых мышечных волокнах и достигает 10-15 мВ. Длительность ПД колеблется от 25 мс до 1 с. В процессе формирования потенциала покоя играют роль не только ионы К +, но и Са) Взаимодействие актина и миозина в гладкомышечных волокнах также активируется ионами Са 2, но они попадают в клетки не с сарко-ретикулума, а транспортируются туда с межклеточного среды. Деполяризация мембраны обусловлена открытием кальциевых каналов и диффузией ионов кальция в клетку.

Проводимость. Проведение возбуждения по гладкомышечному миоциту непрерывное. Однако изолированно отдельные гладкомышечные клетки не возбуждаются и не сокращаются. Взаимодействие между отдельными миоцитами осуществляется благодаря щелевидным контактам, обладающим низким электрическим сопротивлением. Благодаря этому электрическое поле 1 клетки обеспечивает возбуждение другой. Скорость распространения ПД в пределах пучка составляет 5-10 м/с.

Автоматия присуща клеткам-водителя ритма (пейсмекерам). В ее основе лежит спонтанно возникающая медленная деполяризация – при достижении критического потенциала возникает ПД. Эта деполяризация преимущественно обусловлена диффузией ионов кальция в клетку.

2.Рефлекторная дуга – совокупность структур при помощи которой осуществляется рефлекс. Схематично рефлекторную дугу можно изобразить из 5 звеньев.

1. Воспринимающее звено (рецептор) обеспечивает восприятие изменений внешней и внутренней среды организма посредством трансформации энергии раздражения в рецепторный потенциал.

Рефлексогенная зона – совокупность рецепторов, раздражение которых вызывает рефлекс. При любом раздражении возникают рецепторные потенциалы, обеспечивающие посылку н.и. в ЦНС с помощью 2 звена.

2. Афферентное звено

Роль: передача сигнала в цнс к третьему звену рефлекторной дуги. Для соматической нервной системы - это афферентный нейрон с его отростками, тело его расположено в спинномозговых ганглиях или ганглиях черепных нервов. Импульс по дендриту афферентного нейрона, затем по его аксону, далее в цнс.

3. Управляющее звено – совокупность центральных (для ВНС и ПНС) нейронов, формирующих ответную реакцию организма.

4. Эфферентное звено – аксон эффекторного нейрона (для соматической н.с. мотонейрона).

5. Эффектор (рабочий орган) эффекторным нейроном соматической н.с. является мотонейрон

Классификация рефлексов

1. По условиям появления рефлексов в онтогенезе

a) Врожденные (безусловные)

b) Приобретенные

Врожденные могут быть соматическими (с помощью сомат. н.с., в качестве эффектора – скелетная мускулатура) и вегетативными (с помощью вегет. н.с.)

2. По биологическому значению

a) Гомеастатические (регуляция функций внутр. органов; работа сердца; секреция и моторика ЖКТ – пищевые рефлексы.)

b) Защитные (оборонительные)

c) Половые

d) ориентировочный рефлекс.

3. В зависимости от числа синапсов

В центральной части рефлекторной дуги различают.

а) моносинаптические (рефлекс на растяжение четырехглавной мышцы - коленный разгибательный рефлекс, при ударе по сухожилию

б) полисинаптические (участвует несколько последовательно включенных нейронов ЦНС

4. по рецепторам, раздражение которых вызывает ответную реакцию.

а) экстероцептивные

б) интероцептивные

в) проприоцептивные (используются в клинической практике для оценки состояния возбудимости ЦНС и для диагностики.

5. по локализации рефлекторной дуги

А) центральные (дуга через ЦНС)

б) периферические ревлексы (дуга замыкается вне ЦНС)

в) по отношению к физиологическим системам

ПРИЗНАКИ

ВЕГЕТАТИВНАЯ

СОМАТИЧЕСКАЯ

Органы-мишени

Гладкие мышцы, миокард, железы, жировая ткань, органы иммунитета

Скелетные мышцы

Паравертебральные, Превертебральные и Органные

Локализованы в ЦНС

Число эфферентных нейронов

Эффект стимуляции

Возбуждающий или Подавляющий

Возбуждающий

Типы нервных волокон

Тонкие миелиновые или немиелиновые, медленные

миелиновые быстрые