Нейромедиатор в нервно мышечном синапсе скелетных мышц. Сокращение мышечного волокна

Нервно-мышечный синапс (мионевральный синапс) - эффекторное нервное окончание на скелетном мышечном волокне.

Нервный отросток проходя через сарколемму мышечного волокна утрачивает миелиновую оболочку и образует сложный аппарат с цитолеммой мышечного волокна, образующийся из выпячиваний аксона и цитолеммы мышечного волокна, создавая глубокие "карманы". Синаптическая мембрана аксона и постсинаптическая мембрана мышечного волокна разделены синаптической щелью. В этой области мышечное волокно не имеет поперечной исчерченности, характерно скопление митохондрий и ядер. Терминали аксонов содержат большое количество митохондрий и синаптических пузырьков с медиатором (ацетилхолином).

Механизмы передачи возбуждения в синапсах на примере мионеврального синапса

Мионевральный (нервно-мышечный) синапс – образован аксоном мотонейрона и мышечной клеткой.

Нервный импульс возникает в тригерной зоне нейрона, по аксону направляется к иннервируемой мышце, достигает терминали аксона и при этом деполяризует пресинаптическую мембрану. После этого открываются натриевые и кальциевые каналы, и ионы Ca из среды, окружающей синапс, входят внутрь терминали аксона. При этом процессе броуновское движение везикул упорядочивается по направления к пресинаптической мембране. Ионы Ca стимулируют движение везикул. Достигая пресинаптическую мембрану, везикулы разрываются, и освобождается ацетилхолин (4 иона Ca высвобождают 1 квант ацетилхолина). Синаптическая щель заполнена жидкостью, которая по составу напоминает плазму крови, через нее происходит диффузия АХ с пресинаптической мембраны на постсинаптическую, но ее скорость очень мала. Кроме того, диффузия возможна еще и по фиброзным нитям, которые находятся в синаптической щели. После диффузии АХ начинает взаимодействовать с хеморецепторами (ХР) и холинэстеразой (ХЭ), которые находятся на постсинаптической мембране.

Холинорецептор выполняет рецепторную функцию, а холинэстераза выполняет ферментативную функцию. На постсинаптической мембране они расположены следующим образом:

ХР-ХЭ-ХР-ХЭ-ХР-ХЭ.

ХР + АХ = МПКП – миниатюрные потенциалы концевой пластины.

Затем происходит суммация МПКП. В результате суммации образуется ВПСП – возбуждающий постсинаптический потенциал. Постсинаптическая мембрана за счет ВПСП заряжается отрицательно, а на участке, где нет синапса (мышечного волокна), заряд положительный. Возникает разность потенциалов, образуется потенциал действия, который перемещается по проводящей системе мышечного волокна.

ХЭ + АХ = разрушение АХ до холина и уксусной кислоты.

В состоянии относительного физиологического покоя синапс находятся в фоновой биоэлектрической активности. Ее значение заключается в том, что она повышает готовность синапса к проведению нервного импульса. В состоянии покоя 1–2 пузырька в терминале аксона могут случайно подойти к пресинаптической мембране, в результате чего вступят с ней в контакт. Везикула при контакте с пресинаптической мембраной лопается, и ее содержимое в виде 1 кванта АХ поступает в синаптическую щель, попадая при этом на постсинаптическую мембрану, где будет образовываться МПКН.

В нервно-мышечном синапсе (рис. 382.1) ацетилхолин синтезируется в окончаниях двигательных нервов и накапливается в пузырьках. Когда в окончание приходит потенциал действия, ацетилхолин из 150-200 пузырьков высвобождается в синаптическую щель и связывается с холинорецепторами (холинорецепторы нервно-мышечных синапсов принадлежат к N-холинорецепторам), плотность которых особенно высока на гребнях складок постсинаптической мембраны. Каналы, сопряженные с холинорецепторами, открываются, в клетку входят катионы (в основном Na+), и происходит деполяризация постсинаптической мембраны, называемая потенциалом концевой пластинки. Поскольку этот потенциал в норме всегда сверхпороговый, он вызывает потенциал действия, распространяющийся по мышечному волокну и вызывающий сокращение. Потенциал концевой пластинки короткий, так как ацетилхолин, во-первых, быстро отсоединяется от рецепторов, во-вторых - гидролизуется АХЭ.

Потенциал концевой пластинки аналогичен ВПСП в межнейронных синапсах.

Однако амплитуда одиночного ПКП существенно выше, чем ВПСП, потому что в нервно-мышечном соединении высвобождаемый нейромедиатор попадает на более обширную поверхность, где связывается с гораздо большим количеством рецепторов и где, следовательно, открывается намного больше ионных каналов. По этой причине амплитуда одиночного ПКП обычно бывает более чем достаточна для того, чтобы в смежной с концевой пластинкой области плазматической мышечной мембраны возник местный электрический ток, инициирующий потенциал действия. Затем потенциал действия распространяется по поверхности мышечного волокна посредством такого же механизма (рис. 30.19), что и в мембране аксона. Большинство нервно- мышечных соединений расположены в срединной части мышечного волокна, откуда возникший потенциал действия распространяется к обоим его концам.

ОТВЕТ: Импульсы передаются с нервного волокна на мышцу с помощью специального контакта – синапса.

Синапс – межклеточный контакт, который служит для передачи возбуждения с нервной клетки на клетку другой возбудимой ткани. Двигательное нервное волокно, входя в мышцу, утончается, теряет миелиновую оболочку и делится на 5 – 10 веточек, которые подходят к мышечному волокну. В месте контакта с мышцей нервное волокно формирует колбообразное расширение – синаптическое окончание. Внутри этого окончания находится много митохондрий, а также специфические органеллы – синаптические пузырьки, содержащие специальное вещество медиатор (в нервно-мышечном синапсе медиатором является ацетилхолин). Синаптическое окончание покрыто пресинаптической мембраной.

Участок мембраны мышечного волокна, который находится напротив пресинаптической мембраны, имеет особое строение и называется постсинаптической мембраной, или концевой пластинкой. Пространство между пре- и постсинаптической мембраной носит название синаптическая щель. В пресинаптической мембране имеются каналы для ионов кальция, которые открываются при снижении мембранного потенциала (деполяризации). В постсинаптической мембране располагаются рецепторы к ацетилхолину, а также фермент холинэстераза, который разрушает ацетилхолин. Рецепторы представляют собой каналы для ионов натрия, которые открываются при взаимодействии с ацетилхолином.

Следует понимать, что пространство внутри синаптического окончания – это внутриклеточная жидкость, которая относится к нейрону. Синаптическая щель – это внеклеточное пространство. Под постсинаптической мембраной находится цитоплазма мышечного волокна, то есть это внутриклеточное пространство.

Механизм передачи возбуждения в синапсах. Передача возбуждения с нерва на мышцу осуществляется в несколько последовательных этапов. Сначала нервный импульс поступает по аксону и вызывает деполяризацию пресинаптической мембраны. Снижение мембранного потенциала приводит к открытию кальциевых каналов. Поскольку концентрация ионов кальция во внеклеточной среде выше, чем во внутриклеточной, они поступает внутрь синаптического окончания (по сути, во внутриклеточное пространство). Ионы кальция взаимодействуют с синаптическимим пузырьками, из-за чего синаптические пузырьки сливаются с пресинаптической мембраной, и медиатор ацетилхолин выходит в синаптическую щель.

Далее ацетилхолин подходит к постсинаптической мембране и взаимодействует с холинорецепторами. Вследствие этого каналы для натрия открываются, натрий устремляется во внутриклеточное пространство. Поступление ионов натрия в цитоплазму мышечного волокна приводит к уменьшению мембранного потенциала (деполяризации) постсинаптической мембраны, и на ней формируется потенциал концевой пластинки (ПКП). Возникновение ПКП, в свою очередь, вызывает генерацию потенциала действия на соседнем участке мембраны мышечного волокна. Ацетилхолин на постсинаптической мембране очень быстро разрушается холинэстеразой, поэтому натриевые каналы почти сразу закрываются. Если бы этого не происходило, постсинаптическая мембрана была бы всё время деполяризована, и передача возбуждения стала бы невозможной.

Таким образом, возбуждение передаётся с нервного волокна на мышечное.

Итак, передача возбуждения с нерва на мышцу осуществляется в следующей последовательности:

1. Распространение импульса по нервному волокну.

2. Деполяризация пресинаптической мембраны.

3. Открытие кальциевых каналов и поступление ионов кальция в синаптическое окончание.

4. Выделение медиатора в синаптическую щель.

5. Взаимодействие медиатора с холинорецепторами на постсинаптической мембране.

6. Открытие натриевых каналов на постсинаптической мембране.

7. Возникновение потенциала концевой пластинки.

8. Генерация потенциала действия на мембране мышечного волокна.

Основным свойством синапса является проведение возбуждения только в одну сторону: от пресинаптической мембраны к постсинаптической. В обратном направлении импульс передаваться не может. Передача возбуждения в синапсе осуществляется с задержкой.

Дата добавления: 2015-05-19 | Просмотры: 860 | Нарушение авторских прав


| | | | 5 | | | | | | | | | | | | | | | |

Синапс (греч. synapsis - соединение) - это специализированная структура, обеспечивающая передачу сигнала от клетки к клетке. Посредством синапса реализуется действие многих фармакологических препаратов.

Структурно-функциональная организация. Каждый синапс имеет пре - и постсинаптическую мембраны и синаптическую щель (рис. 17).

Рис. 17. Нервно-мышечный синапс скелетной мышцы: 1 – ветвь аксона; 2 – пресинаптическое окончание аксона; 3 – митохондрия; 4 – синаптические пузырьки, содержащие ацетилхолин; 5 – синаптическая щель; 6 – молекулы медиатора в синаптической щели; 7 – постсинаптическая мембрана мышечного волокна с N-холинорецепторами

Пресинаптическая мембрана нервно-мышечного синапса представляет собой часть мембраны пресинаптического окончания аксона мотонейрона. Через нее осуществляется выброс (экзоцитоз) медиатора (лат. mediator - посредник) в синаптическую щель. В нервно-мышечном синапсе медиатором является ацетилхолин. Медиатор пресинаптического окончания содержится в синаптических пузырьках (везикулах), диаметр которых составляет около 40 нм. Они образуются в комплексе Гольджи, с помощью быстрого аксонного транспорта доставляются в пресинаптическое окончание, где заполняются медиатором и АТФ. В пресинаптическом окончании содержится несколько тысяч везикул, в каждой из которых имеется от 1 тыс. до 10 тыс. молекул химического вещества.

Постсинаптическая мембрана (концевая пластинка в нервно-мышечном синапсе) - это часть клеточной мембраны иннервируемой мышечной клетки, содержащая рецепторы, способные связывать молекулы ацетилхолина. Особенность этой мембраны: множества мелких складок, увеличивающих ее площадь и количество рецепторов на ней до 10-20 млн в одном синапсе.

Синаптическая щель в нервно-мышечном синапсе имеет ширину в среднем 50 нм. Она содержит межклеточную жидкость, ацетилхолинэстеразу и мукополисахаридное плотное вещество в виде полосок, мостиков, в совокупности образующих базальную мембрану, соединяющую пре- и постсинаптическую мембраны.

Механизмы синаптической передачи включают три основных этапа (рис. 18).

Рис. 18. Механизм проведения импульса через химический синапс: 1-8 – этапы процесса (Чеснокова, 2007)

Первый этап - процесс выброса медиатора в синаптическую щель, который запускается посредством ПД пресинаптического окончания. Деполяризация его мембраны ведет к открытию потенциалуправляемых Са-каналов. Са 2+ входит в нервное окончание согласно электрохимическому градиенту. Часть медиатора в пресинаптическом окончании локализуется на пресинаптической мембране изнутри. Са 2+ активирует экзоцитозный аппарат пресинапса, представляющий собой совокупность белков (синапсин, спектрин и др.), пресинаптического окончания, активация которых обеспечивает выброс ацетилхолина посредством экзоцитоза в синаптическую щель. Количество высвобождаемого ацетилхолина из пресинаптического окончания пропорционально в четвертой степени количеству поступившего туда Са 2+ . На один ПД из пресинаптического окончания нервно-мышечного синапса выбрасывается 200-300 квантов (везикул) медиатора.

Второй этап - диффузия ацетилхолина в течение 0,1-0,2 мс к постсинаптической мембране и действие его на N-холинорецепторы (стимулируются также никотином, вследствие чего и получили свое название). Удаление ацетилхолина из синаптической щели осуществляется путем разрушения его под действием ацетилхолинэстеразы, расположенной в базальной мембране синаптической щели, в течение нескольких десятых долей миллисекунды. Около 60% холина захватывается обратно пресинаптическим окончанием, что делает синтез медиатора более экономичным, часть ацетилхолина рассеивается. В промежутках между ПД из пресинаптического окончания происходит спонтанное выделение 1- 2 квантов медиатора в синаптическую щель в течение 1 с, формируя так называемые миниатюрные потенциалы (0,4-0,8 мВ). Они поддерживают высокую возбудимость иннервируемой клетки в условиях функционального покоя и выполняют трофическую роль, а в ЦНС - способствуют поддержанию тонуса ее центров.

Третий этап - взаимодействие ацетилхолина с N-холинорецепторами постсинаптической мембраны, в результате чего открываются ионные каналы на 1 мс и, вследствие преобладания входа N + в клетку, происходит деполяризация постсинаптичедкой мембраны (концевой пластинки). Эту деполяризацию в нервно-мышечном синапсе называют потенциалом концевой пластинки (ПКП) (рис. 19).

Особенностью нервно-мышечного синапса скелетного мышечного волокна является то, что при одиночной его активации формируется ПКП большой амплитуды (30-40 мВ), электрическое поле которого вызывает генерацию ПД на мембране мышечного волокна вблизи синапса. Большая амплитуда ПКП обусловлена тем, что нервные окончания делятся на многочисленные веточки, каждая из которых выбрасывает медиатор.

Рис. 19. Потенциал концевой пластинки (Шмидт, 1985): КП – критический потенциал; ПД – потенциал действия; А – ПКП в нормальной мышце; Б – ослабленный ПКП в курарезированной мышце; стрелками указан момент нанесения стимула

Характеристика проведения возбуждения в химических синапсах . Одностороннее проведение возбуждения от нервного волокна к нервной или эффекторной клетке, так как пресинаптическое окончание чувствительно только к нервному импульсу, а постсинаптическая мембрана - к медиатору.

Неизолированное - возбуждение рядом расположенных постсинаптических мембран суммируется.

Синаптическая задержка в передаче сигнала к другой клетке (в нервно-мышечном синапсе 0,5-1,0 мс), что связано с высвобождением медиатора из нервного окончания диффузией его к постсинаптической мембране и возникновением постсинаптических потенциалов, способных вызвать ПД.

Декрементность (затухание ) возбуждения в химических синапсах при недостаточном выделении медиатора из пресинаптических окончаний в синаптические щели.

Низкая лабильность (в нервно-мышечном синапсе составляет 100 Гц), которая в 4 - 8 раз ниже лабильности нервного волокна. Это объясняется синаптической задержкой.

Проводимость нервно-мышечного синапса (как и химических синапсов ЦНС) угнетается или, наоборот, стимулируется различными веществами .

Например, кураре и курареподобные вещества (диплацин, тубокурарин) обратимо связываются с N-холинорецепторами постсинаптической мембраны, блокируют действие на нее ацетилхолина и передачу в синапсе. Напротив, некоторые фармакологические препараты, например прозерин, подавляют активность ацетилхолинэстеразы, способствуя умеренному накоплению ацетилхолина и облегчению синаптической передачи, что используется в лечебной практике.

Утомляемость (синаптическая депрессия) - ухудшение проводимости вплоть до полной блокады проведения возбуждения при длительном функционировании синапса (главная причина - истощение медиатора в пресинаптическом окончании).

Вопросы для самоконтроля

1.Каков механизм распространения возбуждения по нервному волокну? Какова роль перехватов Ранвье в проведении возбуждения по миелинизированному нервному волокну?

2.В чем преимущество скачкообразного (сальтаторного) распространения возбуждения над непрерывным его проведением вдоль мембраны волокна?

3.В чем физиологическое значение изолированного проведения возбуждения по нервному волокну?

4.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе А? Какова скорость проведения возбуждения по ним?

5.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе В? Какова скорость проведения по ним?

6.Какие нервные волокна (афферентные или эфферентные, вегетативные или соматические) относятся к группе С? Какова скорость проведения возбуждения по ним?

7.Перечислите структуры нервно-мышечного синапса (скелетная мышца). Что называют концевой пластинкой?

8.Перечислите последовательность процессов, ведущих к освобождению медиатора из пресинаптической мембраны в синаптическую щель при передаче возбуждения в синапсе.

9. Локальным потенциалом или распространяющимся возбуждением является потенциал концевой пластинки?

10.Что такое миниатюрные потенциалы концевой пластинки, каков механизм их возникновения?

11.В чем заключается трофическое влияние нерва на мышцу, осуществляемое через нервно-мышечный синапс?

12.Какие вещества являются медиаторами в нервно-мышечных синапсах гладкой и поперечнополосатой мышц?

13.Что такое сенсорный рецептор?

14.На какие две группы делятся сенсорные рецепторы по скорости адаптации? Назовите рецепторы, относящиеся к каждой из них.

15.Что понимают под первичными и вторичными рецепторами?

16.Перечислите основные свойства рецепторов.

17.Что называют адаптацией рецепторов? Как изменяется частота импульсов в афферентном нервном волокне при адаптации рецептора?

18.Назовите локальные потенциалы, возникающие при возбуждении первичных и вторичных рецепторов.

19.Рецепторный потенциал, где он возникает, каково его значение?

20.Генераторный потенциал, где он возникает, каково его значение?

21.Где возникает потенциал действия при возбуждении первичного сенсорного рецептора?

22. Где возникает потенциал действия при возбуждении вторичного сенсорного рецептора?

Физиология мышц

1.3.1. Структурно­функциональная характеристика скелетной мышцы

Мышцы подразделяют на поперечнопо­лосатые (скелетная и сердечная ) и гладкие (сосуды и внутренние органы, кроме сердца).

Скелетная мышца состоит из мышечных волокон , изолированных в структурном и функциональном отношении друг от Друга, которые представляют собой вытянутые многоядерные клетки. Толщина волокна составляет 10-100 мкм, а его длина варьирует в пределах от нескольких миллиметров до нескольких сантиметров. Количество мышечных волокон, установившись постоянным на 4-5-м месяце постнатального онтогенеза, в последующем не изменяется; с возрастом изменяются (увеличиваются) лишь их длина и диаметр.

Назначение основных структурных элементов. Характеристика основных элементов мышечного волокна. От клеточной мембраны мышечного волокна (сарколеммы) вглубь отходят многочисленные поперечные инвагинации (Т-трубочки ), которые обеспечивают ее взаимодействие с саркоплазматическим ретикулулом (СПР ) (рис. 20).

Рис. 20. Взаимоотношение клеточной мембраны (1), поперечных трубочек (2), боковых цистерн (3) и продольных трубочек (4) саркоплпзматическаого ретикулума, сократительных белков (5): А – в состоянии покоя; Б – при сокращении мышечного волокна; точками обозначены ионы Ca 2+

СПР представляет собой систему связанных друг с другом цистерн и отходящих от них в продольном направлении канальцев, расположенных между миофибриллами. Терминальные (концевые) цистерны СПР примыкают к Т-трубочкам, формируя так называемые триады . В цистернах содержится Са 2+ , играющий важную роль в мышечном сокращении. В саркоплазме имеются внутриклеточные элементы: ядра, митохондрии, белки (в том числе миоглобин), капельки жира, гранулы гликогена, фосфатсодержащие вещества, различные малые молекулы и электролиты.

Миоибриллы - субъединицы мышечного волокна. В одном мышечном волокне может насчитываться более 2 тыс. миофибрилл, их диаметр 1-2 мкм. В одиночной миофибрилле содержится 2-2,5 тыс. протофибрилл - параллельно расположенных нитей белка (тонкие - актин, толстые - миозин ). Актиновые нити состоят из двух субъединиц, скрученных в виде спирали. В состав тонких нитей входят также регуляторные белки - тропомиозин и тропонин (рис. 21).

Рис. 21. Взаимное расположение структурных элементов миофибрилл при их расслаблении (А,Б) и сокращении (В)

Эти белки в невозбужденной мышце препятствуют взаимосвязи актина и миозина, поэтому мышца в покое находится в расслабленном состоянии. Миофибриллы включают в себя последовательно соединенные блоки - саркомеры (Б), отделенные друг от друга Z-полосками. Саркомер (длина 2-Змкм) является сократительной единицей мышечного волокна; при длине 5см оно включает в себя около 20 тыс. последовательно соединенных саркомеров. Миофибриллы отдельного мышечного волокна связаны таким образом, что расположение саркомеров совпадает, и это создает картину поперечной исчерченности волокна при наблюдении в световом микроскопе (рис. 22).

Рис. 22. Саркомер миоцита скелетной мышцы (A. Vander, J. Sherman, D. Luciano, 2004)

Элементы саркoмера (см. рис. 21). Миозиновые протофибриллы образуют наиболее темную часть саркомера - А-диск (анизотропный, он сильно поляризует белый свет). Более светлый участок в центре А-диска называют Н-зоной . Светлый участок саркомера между двумя А-дисками называют 1-диском (изотропный, почти не поляризует свет). Он образован актиновыми протофибриллами, идущими в обе стороны от Z-полосок. Каждый саркомер имеет два набора тонких нитей, прикрепленных к Z-полоскам, и один комплект толстых нитей, сосредоточенных в А-диске. В расслабленной мышце концы толстых и тонких филаментов в разной степени перекрывают друг друга на границе между А- и 1-дисками.

Классификация мышечных волокон:

По структурно-функциональным свойствам и цвету выделяют две основные группы мышечных волокон: быстрые и медленные.

Белые (быстрые) мышечные волокна содержат больше миофибрилл и меньше - митохондрий, миоглобина и жиров, но больше гликогена и гликолитических ферментов; эти волокна называют гликолитическими . Капиллярная сеть, окружающая эти волокна, относительно редкая. Скорость рабочего цикла у данных волокон примерно в 4 раза больше, чем у медленных, что объясняется более высокой АТФазной активностью быстрых волокон, но они обладают малой выносливостью. У белых мышечных волокон число нитей актина и миозина больше, чем у красных, поэтому они толще и сила их сокращения больше, чем у красных волокон.

Красные мышечные волокна содержат много митохондрий, миоглобина , жирных кислот. Эти волокна окружены густой сетью кровеносных капилляров, они имеют меньший диаметр. Митохондрии обеспечивают высокий уровень окислительного фосфорилирования, поэтому данные волокна называют оксидативными. Красные мышечные волокна подразделяются на две подгруппы: быстрые и медленные . Медленные волокна могут выполнять работу в течение относительно продолжительного периода времени; утомление в них развивается медленнее. Они более приспособлены к тоническим сокращениям. Красные быстрые волокна по скорости утомления занимают промежуточное положение между белыми и красными медленными. Скорость их сокращения близка к скорости сокращения белых волокон, что также объясняется высокой АТФазной активностью миозина красных быстрых волокон.

Также имеется незначительное число истинных тонических мышечных волокон; на них локализуется по 7-10 синапсов, принадлежащих, как правило, нескольким мотонейронам, например, в глазодвигательных мышцах, мышцах среднего уха. ПКП этих мышечных волокон не вызывают генерации ПД в них, а непосредственно запускают мышечное сокращение.

Группа мышечных волокон, двигательную (нейромоторную) единицу. В мышцах, совершающих быстрые и точные движения, например в глазодвигательных, нейромоторные единицы состоят из 3-5 мышечных волокон. В мышцах, осуществляющих менее точные движения (например, мышцы туловища и конечностей), двигательные единицы включают сотни и тысячи мышечных волокон. Большая двигательная единица, по сравнению с малой, включает крупный мотонейрон с относительно толстым аксоном, который образует большое число концевых веточек в мышце и, следовательно, иннервирует большое число мышечных волокон. Все мышечные волокна одной двигательной единицы, независимо от их количества, относятся к одному типу. Все скелетные мышцы по своему составу являются смешанными, т.е. образованы красными и белыми мышечными волокнами.

Специфическим свойством всех мышц является сократимость - способность сокращаться, т.е. укорачиваться или развивать напряжение. Реализация этой способности осуществляется с помощью возбуждения и его проведения по мышечному волокну (свойства соответственно возбудимости и проводимости).

Скелетные мышцы не обладают автоматией, управляются организмом произвольно импульсацией из ЦНС, поэтому их называют также произвольными . Гладкие мышцы по собственному желанию не сокращаются, поэтому их называют также непроизвольными, но они обладают автоматией.

Функции скелетной мышцы :

Обеспечение двигательной активности организма - поиск и добывание воды и пищи, ее захват, жевание, глотание, оборонительные реакции, трудовая деятельность - физическая и творческая работа художника, писателя, ученого, композитора в конечном итоге выражается в движении: рисование, письмо, игра на музыкальном инструменте и т.п.

Обеспечение дыхания (движений грудной клетки и диафрагмы).

Коммуникативная функция (устная и письменная речь, мимика и жесты).

Участие в процессах терморегуляции организма с помощью изменения интенсивности сократительного термогенеза.


©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-15

Нервно-мышечный синапс, с помощью которого мотонейрон связан с мышечным волокном, имеет две основные части - нервную (пресинаптическую) и мышечную (постсинаптическую). Пресинаптическая часть состоит из концевой веточки аксона, погруженной в углубление на поверхности мышечного волокна. Нервное окончание содержит более миллиона пузырьков ацетилхолина (АХ), который выполняет роль медиатора в нервно-мышечной синаптической передаче возбуждения. Покрывающая концевую веточку поверхностная мембрана имеет специфические морфологические и физиологические особенности и потому называется

пресинаптической мембраной.

Мембрана, покрывающая мышечное волокно в области нервно-мышечного синапса, называется постсинаптической мем­браной, или концевой пластинкой. Она образует многочисленные складки, уходящие в глубь мышечного волокна и увеличивающие ее поверхность. Постсинаптическая мембрана имеет особые, чувствительные к АХ холинорецепторные участки и содержит фермент ацетилхолинэстеразу (АХЭ), способный разрушать АХ.

Пре- и постсинаптические мембраны разделены узкой синаптической щелью, которая открывается в межкле­точное пространство.

Процесс сокращения связан с возникновением потенциала действия мышечного волокна и его распространением не только по поверхно­стной мембране, но и по мембранам, выстилающим поперечные трубочки Т-системы.Распространение электрической волны внутрь волокна приводит, в свою очередь, к деполяризации мембран цистерн продольных трубочек саркоплазматического ретикулума. Эта деполя­ризация вызывает быстрый выход ионов кальция, находящихся в цистернах,в межфибрйллярное пространство. Свободные ионы кальция в межфибриллярном пространстве запускают процесс сокращения. Приведенная совокупность явлений, обусловливающих связь между возбуждением (потенциалом действия) и сокращением мышечных волокон, имеет разные названия: «электромеханическая связь», или «электромеханическое сопряжение» (ЭМС), связь «возбуждение - сокращение», «мембранно-миофибриллярная связь».

Освободившиеся из цистерн саркоплазматического ретикулума ионы кальция связываются с тропонином на тонком, актиновом, миофиламенте. В результате устраняется тормозящее влияние тропонина на взаимодействие головок миозина с актином. Головки молекул миозина движутся в направлении к актиновым молекулам и прикрепляются к ним. При этом косо расположенные по­перечные мостики осуществляют продольную тягу, благодаря которой происходит скольжение тонких миофиламентов вдоль толстых (теория скольжения ). При этом тонкие, актиновые, миофи­ламенты «втягиваются» в промежутки между толстыми, миозиновыми, миофиламентами

31. Сокращение мышечного волокна.

Характер (режим) сокращений мышечных волокон определяется частотой импульсации мотонейронов.

В ответ на импульс, приходящий к мышечным волокнам от мотонейрона, возникает быстрая сократительная реакция этих волокон. Такой процесс называется одиночным сокращением. Сущность этого процесса заключается в активации сократительных элементов - миофибрилл, вызывающей подъем напряжения и последу­ющее укорочение мышечного волокна. При изометрическом сокраще­нии мышечные волокна укорачиваются за счет растяжения последова­тельных упругих элементов мышцы и сухожилий, передавая напряже­ние на регистрирующее устройство, а в условиях обычной деятельности мышцы - на костные рычаги. При изотоническом сокращении активация сократительных элементов приводит к подъему внутреннего напряжения, что вызывает укорочение мышцы. Таким образом, кривые изометрического или изотонического сокращений служат внешним проявлением активации сократительного аппарата - его активного состояния.

Более быстро сокращающиеся мышечные волокна имеют более короткий период активного состояния. Напря­жение при одиночном сокращении обычно в несколько раз меньше, чем максимально возможное напряжение данных мышечных волокон.

Мышечные волокна работают в режиме одиночных сокращений при относительно низкой частоте импульсации мотонейронов. Частота импульсации мотонейронов, при которой их мышечные волокна работают в режиме одиночных сокращений, неодинакова у разных ДЕ. Чем медленнее ДЕ, тем реже частота импульсации мотонейрона, при которой его мышечные волокна работают в режиме одиночных сокращений.

Режим тетанического сокращения . Такой режим работы мышечных волокон возникает при относи­тельно высокой частоте импульсации мотонейрона. В этих случаях интервалы между смежными импульсами мотонейрона короче, чем длительность одиночного сокращения иннервируемых им мышечных волокон. Если второй импульс от мотонейрона приходит до того, как закончился первый цикл сокращения, второй цикл накладывается на предыдущий и суммарный ответ мышечных волокон становится больше, чем при одиночном сокращении. Это превышение в силе изометрического напряжения зависит от интервалов между импульсами. При этом величина ответа на каж­дый последующий импульс меньше, чем на предыдущий. После нескольких первых импульсов последующие ответы мышечных волокон не изменяют достигнутого напряжения, но поддерживают его. Такой режим сокращения мышечных волокон называется полным, или гладким, тетанусом. Частота импульсации мотонейрона, при которой его мышечные волокна развивают полный тетанус, называется частотой слияния, или частотой полного, гладкого, тетануса. Частоту импульсации мото­нейрона для полного тетануса называют максимальной. Увеличение частоты импульсации мотонейронов сверх максимальной не вызывает изменения в максимальном напряжении мышечных волокон. В некоторых пределах чем выше начальная частота импульсации мотонейрона, тем быстрее нарастает напряжение в мышечных волокнах.

Если внешняя нагрузка на мышцы меньше, чем ее напряжение, мышца укорачивается и вызывает движение. Это концентрический, или миометрический, тип сокращения. В экспериментальных условиях при электрическом раздражении изолированной мышцы ее укорочение происходит при постоянном напряжении, равном внешней нагрузке. Поэтому этот тип сокращения называют также изотоническим.

Если внешняя нагрузка на мышцы больше, чем ее напряжение, раз­виваемое во время сокращения, мышца растягивается. Это эксцентрический, или плиометрический, тип сокращения. Концентрический и эксцентрический типы сокращения, т. е. сокращения, при которых мышца изменяет длину, относятся к динамической форме сокращения.

Сокращение мышцы, при котором она развивает напряжение, но не изменяет своей длины, называется изометрическим. Это статическая форма сокращения. Она возникает в двух случаях: когда внешняя нагрузка равна напряжению, развиваемому мышцей при сокращении, либо когда внешняя нагрузка превышает напряжение мышцы, но отсутствуют условия для растяже­ния мышцы под влиянием этой внешней нагрузки.

При динамических формах сокращения производится внешняя работа: при концентрическом сокращении - положительная, при эксцентрическом - отрицательная. Величина работы в обоих случаях определяется как произведение внешней нагрузки (поднятого веса) на пройденное расстояние. При изометрическом сокращении «расстояние» равно нулю, и, согласно физическому закону, в этом случае мышца не производит никакой работы. Однако с физиологической точки зрения изометрическое сокращение требует расхода энергии и может быть очень утомительным. В этом случае работа может быть определена как произведение величины напряжения мышцы на время ее сокращения.Во время изометрического сокращения в тепло превращается вся выделяемая мышцей энергия, а при динамическом сокращении не менее 50% ее энергии.

Синапс – это специальная структура для передачи импульсов от клетки к клетке. Каждый синапс имеет пресинаптическую и постсинаптическую мембраны и синаптическую щель между ними. Пресинаптическая мембрана покрывает окончание аксона мотонейрона. Через нее в синаптическую щель поступает медиатор, который затем взаимодействует с рецепторами (их 20-30 млн в одном синапсе) постсинаптической мембраны – это мембрана подлежащей мышечной клетки. Механизм передачи возбуждения в синапсе состоит из 3-х этапов:

1 – ПД, возникший в пресинаптической мембране, повышает ее проницаемость для ионов кальция, который входит в нервное окончание и освобождает медиатор ацетилхолин из пузырьков.

2 – Ацетилхолин диффундирует в синаптическую щель, избыток медиатора разрушает фермент ацетилхолинэстераза.

3 – Ацетилхолин взаимодействует с холинорецепторами постсинаптической мембраны, в результате чего открываются натриевые каналы для входа натрия внутрь клетки – развивается потенциал действия, который распространяется вдоль мышечного волокна, вызывая его сокращение.

Нервно-мышечный синапс имеет следующие свойства: 1.одностороннее проведение возбуждения, 2.синаптическую задержку (на выход медиатора и его диффузию), 3.низкую лабильность (до 100 имп/сек), 4.быструю утомляемость, 5.высокую чувствительность к химическим веществам, лекарственным препаратам, токсинам (что может ускорять или тормозить передачу импульсов от нерва к мышце).

Движение как основное свойство живого.

Смеется ли ребенок при виде игрушки, улыбается ли Гарибальди, когда его гонят за излишнюю любовь к родине, создает ли Ньютон мировые законы и пишет их на бумаге – везде окончательным фактом является движение – так писал отец русской физиологии И.М.Сеченов.

14.Виды мышц, функции и свойства. Все мышцы организма делятся на: поперечно-полосатые (скелетные и сердечная) и гладкие, которые выстилают стенки внутренних органов, сосудов.

Поперечно-полосатые скелетные мышцы являются активной частью опорно-двигательного аппарата. В результате их сокращений происходит перемещение тела в пространстве, перемещение частей тела относительно друг друга, поддержание позы, произносятся слова, осуществляется дыхание, а также вырабатывается тепло.

Каждое мышечное волокно имеет следующие свойства:

1. Возбудимость – способность генерировать ПД в ответ на действие раздражителей.

2. Проводимость – способность проводить возбуждение в обе стороны от места нанесения раздражения.

3. Сократимость – способность сокращаться, изменять свою длину и напряжение.

4. Утомляемость. 5. Пластичность. 6. Тонус. 7.Рефрактерность.

Типы мышечных сокращений.

В зависимости от характера сокращений мышцы различают три их вида:

1.Ауксотоническое сокращение – когда одновременно изменяется длина и напряжение мышцы. Оно может быть эксцентрическим – когда напряжение мышцы сопровождается ее удлинением (например, в процессе приседания) и концентрическим – когда напряжением мышцы сопровождается ее укорочением (например, при разгибании нижних конечностей после приседания).

2.Изометрическое сокращение – когда напряжение мышцы возрастает, а длина ее не меняется. Этот вид сокращения можно наблюдать в эксперименте, когда оба конца мышцы зафиксированы (при фиксации определенного положения).

3.Изотоническое сокращение – укорочение мышцы при ее постоянном напряжении – сокращение ненагруженной мышцы.

В зависимости от длительности сокращений мышцы выделяют 2 их вида: одиночное и тетаническое.

1.Одиночное сокращение мышцы возникает при однократном раздражении нерва или самой мышцы.

2.Тетанические сокращения – это результат суммации двух и более одиночных сокращений. При полной суммации возникает гладкий тетанус, а при неполной суммации – зубчатый тетанус. При прекращении тетанического сокращения мышца расслабляется не полностью, а некоторое время находится в состоянии посттетанической контрактуры (напряжения).

Скелетные мышцы состоят из быстрых и медленных волокон, и соответственно – моторных единиц. Это – группа мышечных волокон, которые иннервируются одним нервным волокном, отходящим от мотонейрона. Быстрая мышца (мышцы глазного яблока) содержит больше моторных единиц, чем медленная (мышцы спины).

Вне действия раздражителя, т.е. в покое, скелетные мышцы находятся в состоянии некоторого напряжения, которое называют тонусом. Внешним выражением тонуса является упругость мышц.

Работа и сила мышц.

Степень укорочения мышцы зависит как от строения, так и от функционального состояния мышцы. Чем больше длина мышцы и ее поперечное сечение, тем больше она сокращается: это мышцы, имеющие перистое строение, - массетер. Сила мышцы – это максимальный груз, который она может поднять. Например, мышцы челюсти собаки поднимают груз, превышающий вес ее тела более 8 раз, а у человека – в 4 раза.

Работа мышц – произведение поднятого груза на величину укорочения мышцы. Если мышца сокращается без нагрузки, то ее работа равна 0. По мере увеличения нагрузки работа сначала увеличивается, а затем постепенно падает. Наибольшую работу мышца совершает при средних нагрузках, и это важно знать врачу при подборе тренировочных нагрузок для спортсмена. Работа мышц, связанная с перемещением груза, называется динамической. Статическая работа совершается при удержании груза в определенном положении, когда нарастает напряжение мышц. Статическая работа более утомительна, чем динамическая.

17.Утомление – это временное понижение работоспособности клетки, органа, организма, наступающее после работы и исчезающее после отдыха. Утомление мышц наступает по разным причинам.

1.Шифф считал, что утомление – это результат истощения запасов энергии в мышце.

2.Пфлюгер полагал, что накопление в мышце недоокисленных продуктов обмена во время работы приводит к развитию утомления.

3.Ферворн доказал, что утомление связано с нехваткой кислорода в мышцах.

Эти теории утомления мышц носят узколокалистический характер, так как в целостном организме (как доказал Сеченов в опыте с пильщиками дров) утомление первично возникает не в мышцах, а в нервных центрах. Заканчиваются запасы медиатора в синапсах ЦНС, требуется время на его синтез. Работоспособность мышцы восстанавливается.

Механизм сокращения мышц.

Мышечные волокна состоят из миофибрилл. Которые содержат до 2500 протофибрилл, представленные молекулами сократительных белков – актина и миозина. Изотропные участки состоят из тонких длинных нитей актина, а анизотропные – из толстых и коротких нитей миозина. Белок миозин имеет поперечные мостики с головками, где хранится АТФ. Сам белок обладает свойствами фермента АТФ-азы. На нитях актина имеются активные центры, содержащие белки тропонин и тропомиозин. Американские ученые- братья Хаксли считают, что при сокращении мышцы белковые нити не укорачиваются, а скользят друг по другу (теория скольжения нитей). Началом мышечного сокращения является выход ионов кальция из цистерн саркоплазматического ретикулума в межфибриллярное пространство. Кальций взаимодействует с белком тропонином, что приводит к смещению тропомиозина. В результате обнажаются активные центры актина, куда с помощью энергии АТФ прикрепляются головки миозиновых нитей. Происходит скольжение миозина и актина. Мышца укорачивается. Затем с помощью кальциевого насоса ионы кальция возвращаются в цистерны. Мышца расслабляется, так как актиновые и миозиновые нити принимают прежнее положение. Энергия АТФ необходима как для сокращения мышцы, так и для ее расслабления.


Похожая информация.