Зависимость силы мышцы от ее строения. Понятие мышечной силы

Скелетные мышечные волокна подразделяются на быстрые и медленные. Скорость сокращения мышц различна и зависит от их функции. Например, быстро сокращается икроножная мышца, а глазная мышца сокращается еще быстрее.

Рис. Типы мышечных волокон

В быстрых мышечных волокнах более развит саркоплазматический ретикулум, что способствует быстрому выбросу ионов кальция. Их называют белыми мышечными волокнами.

Медленные мышцы построены из более мелких волокон, и их называют красными из-за их красноватой окраски, обусловленной высоким содержанием миоглобина.

Рис. Быстрые и медленные мышечные волокна

Таблица. Характеристика трех типов волокон скелетных мышц

Показатель

Медленные оксидативные волокна

Быстрые оксидативные волокна

Быстрые гликолитические волокна

Главный источник образования АТФ

Окислительное фосфорилирование

Гликолиз

Митохондрии

Капилляры

Высокое (красные мышцы)

Высокое (красные мышцы)

Низкое (белые мышцы)

Активность ферментов гликолиза

Промежуточная

Промежуточное

Скорость утомления

Медленная

Промежуточная

Активность АТФазы миозина

Скорость укорочения

Медленная

Диаметр волокна

Размер двигательной единицы

Диаметр двигательного аксона

Сила мышц

Силу мышцы определяют по максимальной величине груза, который она может поднять, либо по максимальной силе (напряжению), которую она может развить в условиях изометрического .

Одиночное мышечное волокно способно развить усилие 100-200 мг. В теле примерно 15-30 млн волокон. Если бы они действовали параллельно в одном направлении и одновременно, то могли бы создать напряжение 20-30 т.

Сила мышц зависит от ряда морфофункциональных, физиологических и физических факторов.

Расчет мышечной силы

Сила мышц возрастает с увеличением площади их геометрического и физиологического поперечного сечения. Физиологическое поперечное сечение мышцы представляет собой сумму поперечных сечений всех волокон мышцы по линии, проведенной перпендикулярно ходу мышечных волокон.

В мышце с параллельным ходом волокон (например, портняжная мышца) площади геометрического и физиологического поперечных сечений равны. В мышцах с косым ходом волокон (межреберные) площадь физиологического сечения больше площади геометрического и это способствует увеличению силы мышц. Еще больше возрастают физиологическое сечение и сила у мышц с перистым расположением мышечных волокон, которое наблюдается в большинстве мышц тела.

Для того чтобы иметь возможность сопоставить силу мышечных волокон в мышцах с различным гистологическим строением, используют понятие абсолютной силы мышцы.

Абсолютная сила мышцы — максимальная сила, развиваемая мышцей, в перерасчете на 1 см 2 физиологического поперечного сечения. Абсолютная сила бицепса составляет 11,9 кг/см 2 , трехглавой мышцы плеча — 16,8, икроножной 5,9, гладких мышц — 1 кг/см 2 .

где А мс — мышечная сила (кг/см 2); Р — максимальный груз, который способна поднять мышца (кг); S — площадь физиологического поперечного сечения мышцы (см 2).

Сила и скорость сокращения , утомляемость мышцы зависят от процентного соотношения различных типов двигательных единиц, входящих в эту мышцу. Соотношение разных типов двигательных единиц в одной и той же мышце у разных людей неодинаково.

Различают следующие типы двигательных единиц:

  • медленные неутомляемые (имеют красный цвет), они развивают небольшую силу сокращения, но могут длительно находиться в состоянии тонического напряжения без признаков утомления;
  • быстрые, легко утомляемые (имеют белый цвет), их волокна развивают большую силу сокращения;
  • быстрые, относительно устойчивые к утомлению, развивающие относительно большую силу сокращения.

У разных людей соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце определено генетически и может значительно различаться. Чем больше в мышцах человека процент медленных волокон, тем более она приспособлена к длительной, но небольшой по мощности работе. Лица с высоким содержанием в мышцах быстрых сильных моторных единиц способны развивать большую силу, но склонны к быстрому утомлению. Однако надо иметь в виду, что утомление зависит и от многих других факторов.

Сила мышцы увеличивается при ее умеренном растяжении. Одним из объяснений этого свойства мышц является то, что при умеренном растяжении саркомера (до 2,2 мкм) увеличивается вероятность образования большего количества связей между актином и миозином.

Рис. Соотношение между силой сокращения и длиной саркомера

Рис. Соотношение между силой мышцы и ее длиной

Сила мышц зависит от частоты нервных импульсов , посылаемых к мышце, синхронизации сокращения большого числа моторных единиц, преимущественного вовлечения в сокращение того или иного типа моторных единиц.

Сила сокращений увеличивается:

  • при вовлечении в процесс сокращения большего количества моторных единиц;
  • при синхронизации сокращения моторных единиц;
  • при вовлечении в процесс сокращения большего количества белых моторных единиц.

При необходимости развить небольшое усилие сначала активируются медленные неутомляемые моторные единицы, затем быстрые, устойчивые к утомлению. Если надо развить силу более 20-25% от максимальной, то в сокращение вовлекаются быстрые, легко утомляемые моторные единицы.

При напряжении до 75% от максимально возможного практически все моторные единицы активированы и дальнейший прирост силы идет за счет увеличения частоты импульсов, посылаемых к мышечным волокнам.

При слабых сокращениях частота посылки нервных импульсов по аксонам мотонейронов составляет 5-10 имп/с, а при большой силе сокращения может доходить до 50 имп/с.

В детском возрасте прирост силы идет главным образом за счет увеличения толщины мышечных волокон, что связано с увеличением в них количества миофибрилл. Прирост числа волокон незначителен.

При тренировке мышц у взрослых нарастание их силы связано с увеличением миофибрилл, а повышение их выносливости обусловлено увеличением числа митохондрий и получением АТФ за счет аэробных процессов.

Имеется взаимосвязь силы и скорости сокращения мышцы. Скорость сокращения мышцы тем больше, чем больше ее длина (за счет суммации сократительных эффектов саркомеров). Она уменьшается при увеличении нагрузки. Тяжелый груз можно поднять только при медленном движении. Максимальная скорость сокращения, достигаемая при сокращении мышц человека, около 8 м/с.

Мощность мышцы равна произведению мышечной силы на скорость укорочения. Максимальная мощность достигается при средней скорости укорочения мышц. Для мышц руки максимальная мощность (200 Вт) достигается при скорости сокращения 2,5 м/с.

Сила сокращения и мощность мышцы снижаются при развитии утомления.

Которое выражается в способности человека преодолевать сопротивление, т. е. противодействовать ему путём мышечно-го напряжения. Раз-витию мышечной силы должно быть отведено значительное место в профессиональной и двигательной подготовке людей.

Многие виды работ как на производстве, так и в быту предъ-являют повышенные требования к мышечной силе. Это поиск и добыча полезных ископаемых, подземные, строительные, бурильные, лесозаготовительные, сельскохозяйственные и другие работы.

Любое движение (на производстве, в быту и спорте) основа-но на мышечной силе как на одном из видов физических спо-собностей, определяющих работоспособность. В наибольшей степени сила связана с выносливостью и быстротой.

Проявление силы мышц зависит: от состояния ЦНС; соот-ветствующей деятельности коры большого мозга; физиологического поперечника мышц; биохимических процессов, про-исходящих в мышцах.

Динамическая и статическая сила

Мышечная сила проявляется в двух основных режимах: изотоническом и изометрическом. В изотоническом режи-ме мышцы, сокращаясь (при укорочении или удлинении), производят движение (динамическая сила ). В изометриче-ском режиме мышцы напрягаются, но движения не произ-водят (статическая сила ).

Динамические, статические и смешанные усилия выполня-ются с различной степенью нервно-мышечного напряжения.

Виды силовых способностей

Выделяют собственно силовые (проявляемые в стати-ческом режиме), скоростно-силовые (проявляемые в дина-мическом режиме) усилия, а также взрывную силу (способ-ность проявлять большую величину силы в наименьший от-резок времени). Скоростно-силовые усилия подразделяются на преодолевающие и уступающие . Например, при сгиба-нии и разгибании рук в упоре лёжа сгибание — уступающее усилие, а разгибание — преодолевающее.

Абсолютная и относительная сила

Сила людей при одинаковой тренировке зависит от массы тела. Существуют понятия абсолютной и относительной мы-шечной силы. Степень развития силы измеряется с помощью динамометров различных конструкций. Материал с сайта

  • Абсолютная сила — это максимальная сила, которую может проявить человек без учёта собственной массы тела.
  • Относительная сила — это сила, приходящаяся на еди-ницу собственной массы.

Понимание этой темы позволит вам регулярно повышать рабочие веса в абсолютно любом упражнении, избегая так называемого «плато». Если вы грезите большими мышечными объемами, обязательно прочитайте нижеприведенную информацию.

Бытует мнение, согласно которому сила мышцы напрямую зависит от её объёма, то есть чем больше мышечная группа, тем большую силу она может развить. Данное высказывание верно лишь отчасти. Постараемся объяснить почему.

Влияние нервной системы
Прежде всего, необходимо вспомнить базовый курс физиологии. Скелетные мышцы человека обладают удивительным свойством - они могут работать не всей массой, а лишь определенными частями. Грубо говоря, именно этот факт позволяет нам регулировать силу.

Управление сократительной активностью мышц происходит с помощью мотонейронов – особых клеток нервного типа, которые находятся в спинном мозге. Именно отсюда по специальным каналам (аксонам) в каждую мышцу посылается сигнал той или иной мощности. В то же время ветки аксона непосредственно возле мышечной группы разветвляются на огромное количество канальцев, каждый из которых подведен к отдельной мышечной клетке – симпласту.

Чем сильнее сигнал поступает от мотонейронов, тем большее количество мышечных волокон включается в работу. Именно так мы регулируем силу и скорость мышечного сокращения, однако показатель максимальной силы зависит совсем от других факторов.

Тетанус
Для того чтобы продолжить, необходимо ввести термин тетанус – это состояние длительного непрерывного сокращения. Данный процесс наблюдается при подъеме рабочего веса (позитивное движение), при опускании (негативное движение) и при статическом удержании.

Сила тетануса зависит от характера и скорости сокращения мышц. Следует помнить: чем быстрее сокращается мышца, тем меньшую силу она может создать . Следовательно, максимальная скорость сокращения мышечного волокна наблюдается при отсутствии внешней нагрузки. В то же время максимальная сила развивается при негативном движении, например в опускании штанги при жиме лежа.

Влияние типов мышечных волокон Как уже говорилось выше, сокращение мышцы начинается с сигнала ЦНС, который поступает в мотонейрон, а оттуда по аксонам к мышцам. Силу сигнала контролирует человеческий мозг, и чем сильнее воздействие на мотонейрон, тем выше частота импульса поступающего по аксонам.

Для ходьбы, как правило, достаточно 4-5 Гц, однако максимальная частота может превышать 50 Гц. В спинном мозге существуют мотонейроны как быстрого, так и медленного типа. Первые могут создавать высокочастотный импульс, который вызовет гораздо большую силу, нежели частоты медленных мотонейронов. Интересным фактом является то, что все быстрые мотонейроны подключены к быстрым мышечным волокнам (белым), а медленные в свою очередь к одноименным (красным).

Сила мышечной группы так же зависит от самой банальной характеристики – количества активных в данный момент волокон. Люди, у которых количество быстрых (белых) мышечных волокон преобладает, могут похвастаться большей силой, так как за единицу времени могут задействовать большее число мышечных клеток.

Люди с преимущественно красными (медленными) волокнами не выделяются силовыми результатами, зато они сильнее предрасположены к совершению длительной работы с умеренной нагрузкой.

Защитные механизмы
Нельзя не отметить существование целой защитной системы под названием органы Гольджи, которые находятся непосредственно в сухожилиях. Они играют роль «сканеров», которые проверяют каждый сигнал, посланный из ЦНС.

При регистрации слишком сильного напряжения, потенциально опасного для костей и суставов, органы Гольджи оказывают угнетающее и тормозящее действие на все активные мотонейроны. В итоге по аксонам идет заниженный сигнал, что в свою очередь заметно ослабляет ту или иную мышечную группу. К сожалению, зачастую данный процесс начинается задолго до реальной опасности. Организм лишний раз подстраховывается, вследствие чего органы Гольджи работают «с запасом».

Однако не все так плохо, ведь данная характеристика тренируется. Регулярные субмаксимальные нагрузки способствуют повышению порога возбудимости органов Гольджи. Кроме того стоит учесть, что некоторые люди от рождения обладают хорошо развитой сухожильной системой, вследствие чего проявляется так называемая сверхсила.

Влияние мышечного энергообмена
Еще одним важным фактором, влияющим на силу мышечной группы, является режим , в котором выполняетсся то или иное упражнение.

Естественно каждый читатель знает о том, что максимальный рабочий вес, то есть сила, зависит и от количества времени под нагрузкой (количества повторений).

В рамках данной темы достаточно отметить, что исходный уровень АТФ и КрФ заметно влияет на возможный рабочий вес отягощения в любом упражнении. Однако стоит помнить, что у некоторых людей, и в частности спортсменов со стажем, уровень энергетических ресурсов достаточно высок, и прием креатиновых добавок в этом случае не поспособствует заметному увеличению силы. В то же время, новичок с заведомо низким уровнем КрФ и АТФ может получить невероятный скачок в силе, за счет банального употребления креатина.

В случае с 8-12 повторениями, ключевую роль играет не количество фосфатов, а каскад других характеристик, таких как: способность сопротивляться лактату (молочной кислоте), количество гликогена мышц, частота мотонейронных сигналов и других. Также стоит отметить, важность активности фермента АТФазы , который расщепляет АТФ и дарит нам энергию.

Данная характеристика всецело зависит от кислотности среды. Так, в нейтральной среде (pH=7) данный фермент показывает отличную работоспособность, но как только в мышечной группе начнут появляться кислые продукты метаболизма, активность АТФазы начнет спадать к нулю. Если в диапазоне повторений 1-6 лактата нет, то при 8-12 рабочих движениях, молочная кислота непременно понизит ваши силовые характеристики.

Практические выводы
Резюмируем всё вышесказанное. Итак, сила мышц зависит от следующих факторов:

  • Силы и частоты сигналов ЦНС и мотонейронов соответственно;
  • Количества мышечных волокон, в частности быстрого (белого) типа;
  • Высокого порога возбудимости органов Гольджи, то есть от крепости связок и суставов;
  • Количества гликогена, АТФ, КрФ или способности противостоять лактату, при том или ином количестве повторений.

Теперь, зная какие факторы влияют на силу мышц, вы можете развивать каждую отдельную характеристику, будь то нервная система или количество КрФ.

Выбор тренировочной цели зависит от того, какую силу вы развиваете: на 1-6 повторений или на 8-12. Необходимо помнить, что у любой характеристики есть свой предел развития. Если вы столкнулись с застоем, попробуйте сменить тренировочную цель. Как правило, достаточно поменять количество повторений.

Стоит отметить, что любая тренировка и развитие силы в целом, увеличивает количество мышечных волокон и объем мускулатуры. Именно поэтому все представители силовых видов спорта обладают хорошим телосложением.

Сила мышцы - количественная мера, выражающая способность мышцы к сокращению во время противодействия её внешней силе, в том числе силе тяжести. Клиническое исследование силы мышц прежде всего выявляет её снижение. Предварительную, ориентировочную оценку мышечной силы начинают с выяснения того, может ли обследуемый осуществлять активные движения во всех суставах и совершаются ли эти движения в полном объёме.

Обнаружив ограничения, врач производит пассивные движения в соответствующих суставах, чтобы исключить местные поражения опорно-двигательного аппарата (мышечные и суставные контрактуры). Ограничение пассивных движений в суставе, вызванное костно-суставной патологией, не исключает, что у больного может быть снижена силы мышц. В то же время отсутствие или ограничение активных произвольных движений при полном объёме пассивных движений у бодрствующего и сотрудничающего с врачом пациента свидетельствует, что причиной расстройства, скорее всего, является патология нервной системы, нервно-мышечных соединений или мышц.

Термином «паралич » (плегия) обозначают полное отсутствие активных движений, обусловленное нарушением иннервации соответствующих мышц, а термином «парез» - снижение мышечной силы. Паралич мышц одной конечности называют моноплегией, паралич нижних мимических мышц, руки и ноги на одной и той же стороне тела - гемиплегией; паралич мышц обеих ног - параплегией, паралич мышц всех четырех конечностей - тетраплегией.

Паралич/парез может быть результатом поражения как центрального (верхнего), так и периферического (нижнего) двигательного нейрона. Соответственно выделяют два типа паралича: периферический (вялый) паралич возникает вследствие поражения периферического двигательного нейрона; центральный (спастический) - в результате поражения центрального двигательного нейрона.

Поражение центрального мотонейрона (например, при церебральном инсульте) затрагивает мышцы конечностей в разной степени. На руке преимущественно страдают абдукторы (отводящие мышцы) и экстензоры (разгибатели), а на ноге - флексоры (сгибатели). Для поражения пирамидной системы на уровне внутренней капсулы (где аксоны пирамидных клеток Беца расположены очень компактно) характерно формирование патологической позы Вернике-Манна: рука пациента согнута и приведена к туловищу, а нога разогнута и при ходьбе отводится в сторону так, что стопа совершает движение по дуге («рука просит, нога косит»).

При патологии периферического двигательного нейрона каждый уровень поражения (вовлекающий передние рога спинного мозга, корешок спинномозгового нерва, сплетение либо периферический нерв) имеет характерный тип распределения мышечной слабости (миотом, невротом). Мышечная слабость бывает не только нейрогенной: она встречается и при первичном поражении мышц (миопатии), и при патологии нервно-мышечного синапса (миастения). Поражение сустава может сопровождаться значительным ограничением движений в нём из-за болей, поэтому при болевом синдроме судить о мышечной слабости и о наличии неврологической патологии нужно с осторожностью.

Оценка мышечной силы

Для оценки мышечной силы пациента просят выполнить движение, требующее сокращения определённой мышцы (мышц), зафиксировать позу и удерживать мышцу в положении максимального сокращения, в то время как исследователь старается преодолеть сопротивление испытуемого и растянуть мышцу. Таким образом, при исследовании силы мышц в клинической практике чаще всего руководствуются принципом «напряжения и преодоления» : врач противодействует напрягаемой пациентом исследуемой мышце и определяет степень требующихся для этого усилий. По очереди исследуют различные мышцы или группы мышц, сравнивая правую и левую стороны (так легче выявить незначительную мышечную слабость).

Важно соблюдать определённые правила обследования. Так, при оценке силы мышц, отводящих плечо, врач должен стоять перед пациентом и оказывать сопротивление движению одной только рукой (но не склоняться над сидящим больным, оказывая давление на руку пациента всей массой тела). Аналогично, оценивая силу сгибателей пальцев, врач использует только свой палец, эквивалентный тестируемому, но не применяет силу всей кисти или руки в целом. Необходимо также делать поправки на детский или пожилой возраст пациента. Силу мышц обычно оценивают в баллах, чаще всего по 6-балльной системе.

Критерии оценки силы мышц по 6-балльной системе

При исследовании неврологического статуса необходимо выяснить силу следующих мышечных групп.

  • Сгибатели шеи: m. sternodeidomastoideus (n. accessories, С 2 -С 3 - пп. cervicales).
  • Разгибатели шеи: mm. profundi colli (C 2 -C 4 - nn. cervicales).
  • Пожимание плечами: m. trapezius (n. accessories, С 2 -С 4 - nn. cervicales).
  • Отведение плеча: m. deltoideus (C 5 -C 6 - n. axillaris).
  • Сгибание супинированной руки в локтевом суставе: m. biceps brachii (C 5 -C 6 - n. musculocutaneus).
  • Разгибание руки в локтевом суставе: m. triceps brachii (C 6 -C 8 - n. radialis).
  • Разгибание в лучезапястном суставе: mm. extensores carpi radialis longus et brevis (C 5 -C 6 - n. radialis), m. extensor carpi ulnaris (C 7 -C 8 - n. radialis).
  • Противопоставление большого пальца кисти: m. opponens pollicis (C 8 -T 1 - п. medianus).
  • Отведение мизинца: m. abductor digiti minimi (C 8 -T 1 - n. ulnaris).
  • Разгибание основных фаланг II-V пальцев: m. extensor digitorum communis, m. extensor digiti minimi, m. extensor indicis (C 7 -C 8 - n. profundus n. radialis).
  • Сгибание бедра в тазобедренном суставе: m. iliopsoas (L 1 -L 3 - n.femoralis).
  • Разгибание ноги в коленном суставе: m. quadricepsfemoris (L 2 -L 4 - n.femoralis).
  • Сгибание ноги в коленном суставе: m. biceps femoris, m. semitendinosus, m. semimembranosus (L 1 -S 2 - n. ischiadicus).
  • Разгибание (тыльное сгибание) стопы в голеностопном суставе: m. tibialis anterior (L 4 -L 5 - n. peroneus profundus).
  • Подошвенное сгибание стопы в голеностопном суставе: m. triceps surae (S 1 -S 2 - n. tibialis).

Вышеперечисленные группы мышц оценивают с помощью следующих тестов.

  • Сгибание шеи - тест для определения силы грудино-ключично-сосцевидных и лестничных мышц. Больного просят наклонить (но не выдвигать) голову в сторону, а лицо повернуть в сторону, противоположную наклону головы. Врач противодействует этому движению.
  • Разгибание шеи - тест, позволяющий определить силу разгибателей головы и шеи (вертикальной порции трапециевидной мышцы, ременных мышц головы и шеи, мышц, поднимающих лопатки, полуостистых мышц головы и шеи).

Пациента просят наклонить голову назад, оказывая противодействие этому движению.

Пожимание плечами - тест, с помощью которого определяют силу трапециевидной мышцы. Больному предлагают «пожать плечами», преодолевая противодействие врача.

Отведение плеча - тест для определения силы дельтовидной мышцы. Пациент по просьбе врача отводит плечо в сторону по горизонтали; руку при этом рекомендуется согнуть в локтевом суставе. Оказывают сопротивление движению, пытаясь опустить его руку. Следует учитывать, что способность дельтовидной мышцы удерживать плечо в отведённом положении нарушается не только при слабости этой мышцы, но и тогда, когда нарушены функции трапециевидной, передней зубчатой и других мышц, стабилизирующих плечевой пояс.

Сгибание супинированной руки в локтевом суставе - тест, предназначенный для определения силы двуглавой мышцы плеча. Двуглавая мышца плеча участвует в сгибании и одновременной супинации предплечья. Для исследования функции двуглавой мышцы плеча врач просит испытуемого супинировать кисть и сгибать руку в локтевом суставе, оказывая сопротивление этому движению.

Разгибание руки в локтевом суставе - тест, используемый для определения силы трёхглавой мышцы плеча. Врач становится сзади или сбоку от пациента, просит его разогнуть руку в локтевом суставе и препятствует этому движению.

  • Разгибание в лучезапястном суставе - тест, помогающий определить силу лучевого и локтевого разгибателей кисти. Пациент разгибает и приводит кисть с выпрямленными пальцами, а врач препятствует этому движению.
  • Противопоставление большого пальца кисти - тест для определения силы мышцы, противопоставляющей большой палец. Обследуемому предлагают крепко прижать дистальную фалангу большого пальца к основанию проксимальной фаланги мизинца той же кисти и сопротивляться попытке разогнуть основную фалангу большого пальца. Используют и тест с полоской плотной бумаги: предлагают сжать её между I и V пальцами и испытывают силу прижатия.
  • Отведение мизинца - тест для определения силы мышцы, отводящей мизинец. Врач пытается привести к остальным пальцам отведённый мизинец пациента вопреки его сопротивлению.
  • Разгибание основных фаланг II-V пальцев - тест, применяемый для определения силы общего разгибателя пальцев кисти, разгибателя мизинца и разгибателя указательного пальца. Больной разгибает основные фаланги II-V пальцев кисти, когда средние и ногтевые согнуты; врач преодолевает сопротивление этих пальцев, а другой рукой фиксирует его лучезапястный сустав.

Сгибание бедра в тазобедренном суставе - тест, позволяющий определить силу подвздошной, большой и малой поясничных мышц. Просят сидящего больного согнуть бедро (привести его к животу) и одновременно, оказывая сопротивление этому движению, воздействуют на нижнюю треть бедра. Можно исследовать силу сгибания бедра и в положении пациента лёжа на спине. Для этого предлагают ему поднять выпрямленную ногу и удерживать её в таком положении, преодолевая давление вниз ладони врача, упирающейся в область середины бедра больного. Снижение силы этой мышцы относят к ранним симптомам поражения пирамидной системы. Разгибание ноги в коленном суставе - тест для определения силы четырёхглавой мышцы бедра. Исследование проводят в положении пациента лёжа на спине, нога согнута в тазобедренном и коленном суставах. Просят его разогнуть ногу, подняв голень. Одновременно подводят руку под колено пациента, придерживая его бедро в полусогнутом положении, другой рукой оказывают давление на голень по направлению книзу, препятствуя её разгибанию. Для тестирования силы этой мышцы пациента, сидящего на стуле, просят разогнуть ногу в коленном суставе. Одной рукой оказывают сопротивление этому движению, другой - пальпируют сокращающуюся мышцу.

  • Сгибание ноги в коленном суставе - тест, необходимый для определения силы мышц задней поверхности бедра (ишиокруральные мышцы). Исследование проводят в положении пациента лёжа на спине, нога согнута в тазобедренном и коленном суставах, стопа плотно соприкасается с кушеткой. Пытаются выпрямить ногу пациента, предварительно дав ему задание не отрывать стопу от кушетки.
  • Разгибание (тыльное сгибание) стопы в голеностопном суставе - тест, помогающий определить силу передней болыпеберцовой мышцы. Пациента, лежащего на спине с выпрямленными ногами, просят тянуть стопы по направлению к себе, несколько приводя внутренние края стоп, при этом врач оказывает сопротивление этому движению.
  • Подошвенное сгибание стопы в голеностопном суставе - тест, используемый для определения силы трёхглавой мышцы голени и подошвенной мышцы. Больной, лежащий на спине с выпрямленными ногами, совершает подошвенное сгибание стоп, вопреки противодействию ладоней врача, которые оказывают давление на стопы в противоположном направлении.

Более подробно методы исследования силы отдельных мышц туловища и конечностей описаны в руководствах по топической диагностике.

Приведённые выше приёмы оценки мышечной силы целесообразно дополнять некоторыми простыми функциональными тестами, предназначенными в большей степени для проверки функции всей конечности, чем для измерения силы отдельных мышц. Эти пробы важны для выявления незначительной мышечной слабости, которую врачу трудно заметить при фиксации внимания на отдельных мышцах.

  • Для выявления слабости в мышцах плеча, предплечья и кисти пациента просят максимально сильно сжать врачу три-четыре пальца руки и во время пожатия стараются высвободить свои пальцы. Тест проводят одновременно на правой и левой руке, чтобы сравнить их силу. Следует учитывать, что сила пожатия в большей степени зависит от сохранности мышц предплечья, поэтому при слабости мелких мышц кисти рукопожатие может оставаться довольно сильным. Точно измерить силу сжатия кисти можно с помощью динамометра. Тест сжатия кисти позволяет выявить не только слабость мышц руки, но и феномен миотонии действия, наблюдаемый при таких наследственных нервно-мышечных заболеваниях, как дистрофическая и врождённая миотония. После сильного сжатия своей кисти в кулак или сильного пожатия чужой руки больной с феноменом миотонии действия не может быстро разжать свою кисть.
  • Для выявления слабости в проксимальных отделах ног обследуемый должен встать из положения сидя на корточках без помощи рук. У детей следует понаблюдать, каким образом они поднимаются из положения сидя на полу. Например, при миодистрофии Дюшенна ребёнок прибегает к вспомогательным приёмам при вставании («взбирание по самому себе»).
  • Для выявления слабости в дистальных отделах ног больному предлагают встать и походить на пятках и «носочках».
  • Центральный (пирамидный) парез рук можно выявить, предложив пациенту с закрытыми глазами удерживать выпрямленные руки с почти соприкасающимися ладонными поверхностями немного выше горизонтального уровня (проба Барре для верхних конечностей). Рука на стороне пареза начинает опускаться, при этом кисть сгибается в лучезапястном суставе и ротируется внутрь («пронаторный дрейф»). Эти постуральные расстройства считаются весьма чувствительными признаками центрального пареза, позволяющими выявлять его даже тогда, когда прямое исследование силы мышц не обнаруживает каких-либо нарушений.
  • У пациентов с подозрением на миастению важно установить, не нарастает ли слабость в мышцах головы, туловища и конечностей при нагрузке. Для этого они вытягивают перед собой руки и смотрят на потолок. В норме человек способен находиться в такой позе не менее 5 мин. Используют и другие провоцирующие мышечную утомляемость пробы (приседания, громкий счёт до 50, повторное открывание и закрывание глаз). Наиболее объективно миастеническое утомление можно выявить с помощью динамометра: измеряют силу сжатия кисти в кулак, затем пациент быстро выполняет 50 интенсивных сжатий обеих кистей в кулак, после чего вновь проводят динамометрию кистей. В норме сила сжатия кистей остаётся практически одинаковой до и после такой серии сжатий кистей в кулак. При миастении после физических напряжений мышц кисти сила сжатия динамометра снижается более чем на 5 кг.

Мы перевели, переработали и отредактировали грандиозную базовую статью Грега Нуколса о том, как взаимосвязан объем и сила мышц. В статье подробно объясняется, к примеру, почему средний пауэрлифтер на 61% сильнее среднего бодибилдера при том же объеме мышц.

Наверняка вам встречалась такая картина в спортзале: огромный мускулистый парень делает приседания с 200-килограммовой штангой, пыхтя и делая небольшое количество повторений. Затем с такой же штангой работает парень с намного менее массивными ногами, но легко делает большее количество повторений.

Аналогичная картина может повторяться и в жиме или становой. Да и из курса школьной биологии нас учили: сила мышцы зависит от площади поперечного сечения (грубо говоря – от толщины), однако наука показывает, что это сильное упрощение и дело обстоит не совсем так.

Площадь поперечного сечения мышцы.

В качестве примера посмотрите, как 85-килограммовый парень жмет от груди 205 кг:

Однако гораздо более массивные ребята не могут приблизиться к таким показателям в жиме.

Или вот 17-летний атлет приседает со штангой 265 кг:

При этом его объемы намного меньше многих атлетов, кому до такого результата далеко.

Ответ прост: на силу влияет много других факторов, кроме объема мышц

Средний мужчина весит около 80 кг. Если человек – не тренированный, то тогда около 40% веса его тела составляют скелетные мышцы или около 32 кг. Несмотря на то, что рост мышечной массы очень сильно зависит от генетики, в среднем мужчина способен за 10 лет тренировок увеличить свою мышечную массу на 50%, то есть добавить к своим 32 кг мышц еще 16.

Скорее всего 7-8 кг мышц из этой прибавки добавится в первый год упорных тренировок, еще 2-3 кг – за следующие пару лет, а остальные 5-6 кг – за 7-8 лет упорных тренировок. Это типичная картина роста мышечной массы. С ростом мышечной массы примерно на 50% сила мышц возрастет в 2-4 раза.

Грубо говоря, если в первый день тренировок человек может поднять на бицепс вес в 10-15 кг, то впоследствии этот результат может вырасти до 20-30 кг.

С приседом: если в первые тренировки вы приседали с 50-килограммовой штангой, этот вес может вырасти до 200 кг. Это не научные данные, просто для примера – как могут расти силовые показатели. При подъеме на бицепс сила может вырасти примерно в 2 раза, а вес в приседаниях – в 4 раза. Но при этом объем мышц вырос только на 50%. То есть получается, что в сравнении с ростом массы, сила растет в 4-8 раз больше.

Безусловно мышечная масса имеет важное значение для силы, но, возможно, не определяющее. Давайте пройдемся по основным факторам, влияющим на силу и массу.

Мышечные волокна

Как показывают исследования: чем больше размер мышечного волокна, тем больше его сила.

На этом графике показана явная зависимость размеров мышечных волокон и их силы:

Как зависит сила (вертикальная шкала) от размера мышечных волокон (горизонтальная шкала). Исследование: From Gilliver, 2009 .

Однако если абсолютная сила стремится к росту при бОльшем объеме мышечных волокон, относительная сила (сила в соотношении с размером) — наоборот — падает .

Давайте разберемся почему так происходит.

Есть показатель для определения силы мышечных волокон относительно их объема — “specific tension” (переведем его как «удельная сила»). Для этого нужно максимальную силу разделить на площадь поперечного сечения:

Мышечные волокна: удельная сила волокон бодибилдеров на 62% ниже лифтеров

Так вот дело в том, что удельная сила очень сильно зависит от типа мышечных волокон .

В этом исследовании ученые выяснили, что удельная сила мышечных волокон профессиональных бодибилдеров на целых 62% ниже, чем у профессиональных лифтеров .

То есть, условно говоря, мышцы среднего пауэрлифтера сильнее на 62% мышц среднего бодибилдера при одинаковом объеме.

Более того, мышечные волокна бодибилдеров также слабее на 41%, чем у нетренированных людей из расчета на их площадь поперечного сечения. То есть из расчета на квадратный сантиметр толщины, мышцы бодибилдеров слабее, чем у тех, кто вообще не тренировался (но в целом, бодибилдеры, конечно, сильнее за счет общего объема мышц).

В этом исследовании сравнили разные мышечные волокна и выяснили, что самые сильные мышечные волокна в 3 раза сильнее самых слабых той же толщины — это очень большая разница.

Мышечные волокна быстрее растут в площади сечения, чем в силе

Так вот оба этих исследования показали, что с увеличением размера мышечных волокон их сила к толщине падает . То есть в размерах они растут больше, чем в силе .

Зависимость такая: при удвоении площади поперечного сечения мышцы ее сила вырастает только на 41%, а не в 2 раза .

В этом плане с силой мышечного волокна лучше коррелирует диаметр волокна, а не площадь сечения (внесите это исправление в школьные учебники по биологии!)

В конечном итоге все показатели ученые свели вот к такому графику:

По горизонтали: увеличение площади поперечного сечения мышцы. Синяя линия — рост диаметра, красная — общий рост силы, желтая — рост удельной силы (на сколько сила увеличивается при увеличении площади поперечного сечения).

Вывод, который можно сделать: с ростом объема мышц растет и сила, однако прирост размера мышцы (т.е. площади поперечного сечения) обгоняет прирост силы . Это усредненные показатели, собранные из целого ряда исследований и в некоторых исследованиях данные разнятся.

К примеру, в этом исследовании за 12 недель тренировок у подопытных площадь сечения мышц выросла в среднем на 30%, но при этом удельная сила не изменилась (то есть, читаем между строк, сила тоже увеличилась примерно на 30%).

Результаты этого исследования схожи: площадь поперечного сечения мышцы увеличилась у участников на 28-45% после 12 недель тренировок, но удельная сила не изменилась.

С другой стороны, эти 2 исследования (раз и два) показали увеличение удельной силы мышц при отсутствии роста самих мышц в объеме. То есть сила выросла, а объем — нет и благодаря этому сочетанию, получается, выросла удельная сила.

Во всех этих 4 исследованиях сила росла в сравнении с диаметром мышцы, но в сравнении с площадью поперечного сечения сила росла только в том случае, если мышечные волокна не росли.

Итак, давайте подытожим важную тему с мышечными волокнами:

  • Люди сильно отличаются по количеству мышечных волокон того или другого типа . Помните: удельная сила мышечных волокон у лифтеров (тренирующих силу) в среднем на 61% больше, чем у бодибилдеров (тренирующих объем). Грубо говоря, при одинаковых по объему мышцах лифтерские сильнее в среднем на 61%.
  • Самые слабые мышечные волокна в 3 раза слабее самых сильных . Их количество у каждого человека определяется генетически. Это означает, что гипотетически максимально возможная разница в силе мышц одного и того же объема — различается до 3 раз.
  • Удельная сила (сила на квадратный сантиметр поперечного сечения) не всегда растет с тренировками . Дело в том, что площадь поперечного сечения мышц растет в среднем быстрее, чем сила.

Место прикрепления мышц

Важный фактор силы — это то, как крепятся мышцы к костям и длина конечностей. Как вы помните из школьного курса физики — чем больше рычаг, тем легче поднимать вес.

Если прилагать усилие в точке А, то потребуется намного больше силы для подъема того же веса по сравнению с точкой B.

Соответственно, чем дальше мышца прикреплена (и чем короче конечность) — тем больше рычаг и тем бОльший вес можно поднять. Этим отчасти объясняется, почему некоторые довольно худые ребята способны поднимать намного больше некоторых особо объемных.

К примеру, в этом исследовании говорится, что разница в силе в зависимости от места прикрепления мышц в коленном суставе у разных людей составляет 16-25%. Тут уж как повезло с генетикой.

Причем, с ростом мышц в объеме момент силы увеличивается: это происходит потому, что с ростом мышцы в объеме «угол атаки» немного меняется и этим отчасти объясняется то, что сила растет быстрее объема.

В исследовании Andrew Vigotsky есть отличные картинки, наглядно демонстрирующие, как это происходит:

Самое главное — это заключение: последняя картинка, демонстрирующая, как с ростом толщины мышцы (площади поперечного сечения) — меняется угол приложения усилий, а значит и двигать рычаг более объемным мышцам становится легче.

Способность нервной системы активировать больше волокон

Еще один фактор силы мышц вне зависимости от объема — способность ЦНС (центральной нервной системы) активировать как можно большее количество мышечных волокон для сокращения (и расслаблять волокна — антагонисты).

Грубо говоря, способность максимально эффективно передавать мышечным волокнам правильный сигнал — на напряжение одних и расслабление других волокон. Вы наверняка слышали, что в обычной жизни мы способны передавать мышцам лишь определенное нормальное усилие, но в критический момент сила может вырастать многократно. В этом месте обычно приводятся примеры, как человек поднимает автомобиль, чтобы спасти жизнь близкого (и таких примеров действительно довольно много).

Впрочем, научные исследования пока не смогли доказать это в полной мере.

Ученые сравнивали силу «добровольного» сокращения мышц, а затем с помощью электростимуляции добивались еще большего — 100% напряжения всех мышечных волокон.

В результате оказалось, что «добровольные» сокращения составляют около 90-95% от максимально возможной сократительной силы , которой добивались с помощью электростимуляции (непонятно только какую погрешность и влияние такие «стимулирующие» условия оказали на мышцы-антагонисты, которые нужно расслаблять для получения большей силы — прим. Зожника ).

Ученые и автор текста делают выводы: вполне возможно, что некоторые люди смогут значительно увеличить силу, натренировав передачу сигналов мозга к мышцам, но большинство людей не способны значительно увеличить силу только за счет улучшения способности активировать больше волокон.

Нормализованная сила мышцы (НСМ)

Максимальная сократительная сила мышцы зависит от объемов мышцы, силы мышечных волокон, из которых она состоит, от «архитектуры» мышцы, грубо говоря, от всех факторов, что мы указали выше.

Объем мышцы согласно исследованиям отвечает примерно за 50% разницы в силовых показателях у разных людей.

Еще 10-20% разницы в силе объясняют «архитектурные» факторы, такие как место прикрепления, длина фасций.

Остальные факторы, отвечающие за оставшиеся 30-40% разницы в силе, вообще не зависят от размеров мышц .

Для того, чтобы рассмотреть эти факторы важно ввести понятие — нормализованная сила мышцы (НСМ) — это сила мышцы в сравнении с площадью ее сечения. Грубо говоря, насколько сильна мышца по сравнению со своим размером .

Большинство исследований (но не все) показывают, что НСМ растет по мере тренировок. Но при этом, как мы рассмотрели выше (в разделе про удельную силу), сам по себе рост объема не дает такой возможности, это значит, что рост силы обеспечивается не только ростом объема, улучшением прохождения мышечных сигналов, а другими факторами (теми самыми, что отвечают за те оставшиеся 30-40% разницы в силе).

Что это за факторы?

Улучшение качества соединительных тканей

Один из этих факторов — с ростом тренированности улучшается качество соединительной ткани, передающей усилия от мышц к костям . С ростом качества соединительной ткани скелету передается бОльшая часть усилий, а значит растет сила при том же объеме (то есть растет нормализованная сила).

Согласно исследованию до 80% силы мышечного волокна передается окружающим тканям, которые прикрепляют мышечные волокна к фасциям с помощью ряда важных белков (endomysium, perimysium, epimysium и другие). Эта сила передается сухожилиям, увеличивая общую передаваемую силу от мышц к скелету.

В этом исследовании , к примеру, показано, что ДО тренировок НСМ (сила всей мышцы на площадь поперечного сечения) была на 23% выше, чем удельная сила мышечных волокон (сила мышечных волокон на площадь поперечного сечения этих волокон).

А ПОСЛЕ тренировок НСМ (удельная сила всей мышцы) была на 36% выше (удельной силы мышечных волокон). Это означает, что сила всей мышцы при тренировках растет лучше, чем сила суммы всех мышечных волокон .

Ученые связывают это с ростом соединительных тканей, позволяющих эффективнее передавать силу от волокон к костям.

Сверху и снизу схематично показаны сухожилия — между ними — мышечное волокно. С ростом тренированности (правый рисунок) растет и соединительная ткань вокруг мышечных волокон, количество и качество соединений, позволяя эффективнее передавать усилие мышечного волокна к сухожилиям.

Идея о том, что с ростом тренированности улучшается качество волокон передающих усилие (и рисунок выше) взяты из исследования 1989 года и пока это по большей части теория.

Впрочем, есть исследование 2010 года , поддерживающее эту позицию. В ходе этого исследования при не изменившихся показателях мышечных волокон (удельная сила, пиковая сила) общая сила всей мышцы в среднем выросла на 17% (но с большим разбросом у разных людей: от 6% до 28%).

Антропометрия как фактор силы

В дополнение ко всем перечисленным факторам силы мышц, общая антропометрия тела также влияет на количество выдаваемой силы и насколько эффективно эта сила может передаваться при сгибании суставов (причем, независимо от момента силы отдельных суставов).

Возьмем для примера приседание со штангой. Гипотетическая ситуация: 2 одинаково тренированных человека с мышцами одинакового размера и состава волокон, идентично прикрепленные к костям. Если при этом у человека А бедро длиннее на 20%, чем у человека B, то человек B должен гипотетически приседать с весом на 20% больше .

Однако в реальности все происходит не совсем так, в связи с тем, что при изменении длины костей пропорционально меняется и место прикрепления мышц.

Таким образом, если у человека А бедро длиннее на 20%, то и место прикрепления мышц к кости бедра (величина рычага) также пропорционально — на 20% дальше — а значит, длина бедра нивелируется выигрышем в прикреплении мышцы дальше от сустава. Но это в среднем . В реальности антропометрические данные, конечно, разнятся от человека к человеку.

Например, есть наблюдение , что пауэлифтеры с более длинной голенью и коротким бедром склонны приседать с бОльшим весом, чем те, у кого бедро длиннее относительно голени . Аналогичное наблюдение и по поводу длины плеча и жима штанги от груди.

Независимо от всех остальных факторов антропометрия тела вносит коррективу в силу, однако измерение этого фактора представляет сложность, так как сложно отделить его от других.

Специфичность тренировок

Вы прекрасно знаете о специфичности тренировок: что тренируешь — то и улучшается. Наука говорит, что специфичность работает в отношении самых разных аспектов тренировок. Значительная часть этого эффекта работает благодаря тому, что нервная система учится эффективнее совершать определенные движения.

Вот простой пример. Это исследование часто используют в качестве примера, иллюстрирующего принцип специфичности:

  • 1 группа тренировалась с весом 30% от — по 3 повторения до мышечного отказа.
  • 2 группа тренировалась с весом 80% от 1ПМ — и делала только 1 повторение до мышечного отказа.
  • 3 группа тренировалась с весом 80% от 1ПМ — по 3 повторения до мышечного отказа.

Наибольшего улучшения в силе ожидаемо добилась группа 3 — тренировки с тяжелым весом и 3 подхода в упражнении.

Однако когда в конце исследований среди всех групп проверяли максимальное количество повторений с весом 30% от 1ПМ, то наилучший результат показала группа, которая и тренировалась с 30% от 1ПМ. Соответственно, при проверке максимального веса на 1ПМ результаты лучше выросли у тех, кто тренировался с 80% от 1ПМ.

Еще одна любопытная деталь в этом исследовании: когда стали проверять как изменились результаты в статической силе (ее не тренировали ни в одной из 3 групп) — то результаты в росте этого показателя были одинаковы, так как все 3 группы не тренировали специфично этот силовой показатель.

С ростом опыта и оттачиванием техники связан рост силы. Причем, в комплексных многосуставных упражнениях, где задействованы крупные мышечные группы эффект от тренировок больше, чем в небольших мышцах.

На этом графике видно как с ростом количества повторений (горизонтальная шкала) уменьшается доля ошибок в упражнении.