Двигательные единицы мышц физиология. Двигательная единица

Двигательные единицы

Сила и работа мышечного волокна. Двигательные единицы.

Величина сокращения (сила мышцы) зависит от морфологических свойств и физиологического состояния мышцы:

1. Исходной длины мышцы (длинны покоя). Сила мышечного сокращения зависит от исходной длины мышцы или длины покоя. Чем сильнее мышца растянута в покое, тем сильнее сокращение (закон Франка-Старлинга).

2. Диаметра мышцы или поперечного сечения. Выделяют два диаметра:

а) анатомический диаметр – поперечное сечение мышц.

б) физиологический диаметр – перпендикулярное сечение каждого мышечного волокна. Чем больше физиологическое сечение, тем большей силой обладает мышца.

Сила мышцы измеряется весом максимального груза поднятого на высоту или максимальным напряжением, ĸᴏᴛᴏᴩᴏᴇ она способна развить в условиях изометрического сокращения. Измеряется в килограммах или ньютонах. Методика измерения силы мышцы принято называть динамометрия.

Выделяют два вида силы мышцы:

1. Абсолютная сила – отношение максимальной силы к физиологическому диаметру.

2. Относительная сила – отношение максимальной силы к анатомическому диаметру.

При сокращении мышца способна выполнять работу. Работа мышцы измеряется произведением поднятого груза на величину укорочения.

Работа мышцы характеризуется мощностью. Мощность мышцы определяется величиной работы в единицу времени и измеряется в ваттах.

Наибольшая работа и мощность достигается при средних нагрузках.

Мотонейрон с группой иннервируемых им мышечных волокон составляет двигательную единицу. Аксон мотонейронов может ветвиться и иннервировать группу мышечных волокон. Так, один аксон может иннервировать от 10 до 3000 мышечных волокон.

Различают двигательные единицы по строению и функциям.

По строению двигательные единицы делятся на:

1. Малые двигательные единицы, которые имеют малый мотонейрон и тонкий аксон, способный иннервировать 10-12 мышечных волокон. К примеру, мышцы лица, мышцы пальцев рук.

2. Большие двигательные единицы представлены крупным телом мотонейрона, толстым аксоном, который способен иннервировать более 1000 мышечных волокон. К примеру, четырехглавая мышца.

По функциональному значению двигательные единицы делятся на:

1. Медленные двигательные единицы. Οʜᴎ включают малые двигательные единицы, являются легко возбудимыми, характеризуются невысокой скоростью распространения возбуждения, в работу включаются первыми, но при этом они практически не утомляемы.

2. Быстрые двигательные единицы. Οʜᴎ состоят из больших двигательных единиц, плохо возбудимы, обладают большой скоростью проведения возбуждения. Обладают высокой силой и скоростью ответа. К примеру, мышцы боксера.

Эти особенности двигательных единиц обусловлены рядом свойств.

Мышечные волокна, которые входят в двигательные единицы, имеют сходные свойства и различия. Так, медленные мышечные волокна обладают:

1. Богатой капиллярной сетью.

3. Содержит много миоглобина (ᴛ.ᴇ. способны связывать большое количество кислорода).

4. В них содержится много жиров.

Благодаря этим особенностям эти мышечные волокна обладают высокой выносливостью, способны к небольшим по силе сокращениям, но длительным по времени.

Отличительные особенности быстрых мышечных волокон:

2. Обладают большей скоростью и силой сокращения.

В связи с этими особенностями быстрые мышечные волокна быстро утомляемы, но обладают большой силой и высокой скоростью ответа.

Двигательные единицы - понятие и виды. Классификация и особенности категории "Двигательные единицы" 2017, 2018.

С функциональной точки зрения мышца состоит из ДЕ. Двигательная единица (ДЕ) - это понятие структурно-функциональное. В состав отдельной ДЕ входит мотонейрон и иннервируемый его аксоном комплекс мышечных волокон. Мышечные волокна, объединенные в одну ДЕ, разбросаны среди других мышечных волокон, принадлежащих другим ДЕ, и изолированы от последних. Отдельные мышцы включают в себя разное количество ДЕ.

В зависимости от морфологических особенностей мотонейрона и мышечных волокон, ДЕ подразделяются на малые, средние и большие.

Малая ДЕ состоит из нескольких мышечных волокон и небольшого по размеру мотонейрона с тонким аксоном - до 5 - 7 мкм и небольшим количеством аксонных ветвлений. ДЕ этой группы характерны для мелких мышц кисти, предплечья, мимической и глазодвигательной мускулатуры. Реже они встречаются в крупных мышцах конечностей и туловища.

Большие ДЕ состоят из крупных мотонейронов с толстым (до 15 мкм) аксоном, и значительного числа (до нескольких тысяч) мышечных волокон. Они составляют основную долю среди ДЕ крупных мышц.

Средние, по размеру, ДЕ занимают промежуточное положение.

    Какая связь между размерами мышцы и способностью выполнять движения и ДЕ?

В целом, чем крупнее мышца и чем меньше разработаны движения, в которых она участвует, тем меньшим числом ДЕ она представлена и тем крупнее ДЕ, ее составляющие.

    Почему, кто-то силен с рождения, а кто-то вынослив?

Но вот еще один важный момент. Оказывается, волокна в каждой мышце бывают двух типов – быстрые и медленные.

Медленно с окращающиеся волокна еще называют красными , потому что в них находится много красного мышечного пигмента миоглобина. Эти волокна отличаются хорошей выносливостью.

Быстрые волокна, по сравнению с красными волокнами, обладают небольшим содержанием миоглобина, поэтому их называют белыми волокнами. Они отличаются высокой скоростью сокращений и позволяют развивать большую силу.

Да вы и сами видели такие волокна у курицы – ножки красные, грудка белая, Воот! Это оно самое и есть, только у человека эти волокна перемешаны и присутствуют оба типа в одной мышце.

Красные (медленные) волокна используют аэробный (с участием кислорода) путь получения энергии, поэтому к ним подходит больше капилляров, для лучшего снабжения их кислородом. Благодаря такому вот способу преобразования энергии, красные волокна являются низко утомляемыми и способны поддерживать относительно небольшое, но длительное напряжение. В основном, именно они важны для бегунов на длинные дистанции, и в других видах спорта, где требуется выносливость. Значит, и для всех желающих похудеть они имеют так же решающую роль.

Быстрые (белые) волокна, получают энергию для своего сокращения без участия кислорода (анаэробно). Такой способ получения энергии (его еще называют гликолизом), позволяет белым волокнам развивать большую быстроту, силу и мощность . Но за высокую скорость получения энергии белым волокнам приходится платить быстрой утомляемостью, так как гликолиз приводит к образованию молочной кислоты, а ее накопление вызывает усталость мышц и в итоге останавливает их работу. Ну и, конечно же, без белых волокон ну никак не могут обойтись метатели, штангисты, бегуны на короткие дистанции….. в общем те, кому требуются сила и скорость.

Теперь придется вас немного запутать, просто потому, что по-другому ну никак не получается. Дело в том, что существует еще один, промежуточный тип волокон, который так же относиться к белым волокнам, но использует как и красные, преимущественно аэробный путь получения энергии и совмещает в себе свойства белых и красных волокон. Еще раз напомню, он относится к белым волокнам.

В среднем человек имеет примерно 40% медленных (красных) и 60 % быстрых (белых) волокон. Но это средняя величина по всей скелетной мускулатуре, что-то наподобие средней температуры по больнице.

На самом деле, мышцы выполняют различные функции и поэтому могут значительно отличаться друг от друга составом волокон. Ну, например, мышцы, выполняющие большую статическую работу (камбаловидная, она же икроножная мышца), часто обладают большим количеством медленных волокон, а мышцы, совершающие в основном динамические движения (бицепс), имеют большое количество быстрых волокон.

Интересно то, что соотношение быстрых и медленных волокон у нас неизменно, не зависит от тренированности и определяется на генетическом уровне. Именно поэтому существует предрасположенность к тем или иным видам спорта.

Теперь давайте-ка посмотрим, как же все это работает.

    Когда человек больше худеет на беговой дорожке или на тренажерах?

Когда требуется легкое усилие, например, при ходьбе или беге трусцой, задействуются медленные волокна. Причем ввиду большой выносливости этих волокон такая работа может продолжаться очень долго. Но по мере увеличения нагрузки организму приходится вовлекать в работу все больше и больше таких волокон, причем те, что уже работали, увеличивают силу сокращения. Если еще увеличивать нагрузку, то в работу включатся так же быстрые окислительные волокна (помните промежуточные?). При нагрузке достигающей 20%-25% от максимальной, например, во время подъема в гору или финального рывка, уже и силы окислительных волокон становится недостаточно, и вот тут как раз включатся в работу быстрые - гликолитические волокна. Как уже говорилось, быстрые волокна значительно повышают силу сокращения мышцы, но, так же быстро и утомляются, и поэтому в работу будет вовлекаться все большее их количество. В итоге, если уровень нагрузки не уменьшится, движение в скором времени придется остановить из-за усталости.

Вот и получается, что при длительной нагрузке в умеренном темпе, работают в основном медленные (красные) волокна и именно благодаря их аэробному способу получения энергии и сжигаются жиры в нашем организме.

Вот вам и ответ на вопрос, почему мы худеем на беговой дорожке и практически не худеем при занятиях на тренажерах. Все просто - используются разные различные мышечные волокна, а значит и разные источники энергии.

Вообще, мышцы - самый экономичный в мире двигатель. Растут и увеличивают свою силу, мышцы исключительно за счет увеличения толщины мышечных волокон, количество же мышечных волокон не увеличивается. Поэтому, самый последний заморыш и Геракл по числу мышечных волокон не имеют друг перед другом никакого преимущества. Кстати, процесс увеличения толщины мышечных волокон называется гипертрофия, а уменьшения - атрофия.

При тренировках, имеющих целью увеличение силы, мышцы прибавляются в объеме значительно больше, чем при тренировках на выносливость, потому что сила зависит от поперечного сечения мышечных волокон, а выносливость - от добавочного количества капилляров, окружающих эти волокна. Соответственно, чем больше капилляров, тем больше кислорода с кровью будет доставлено к работающим мышам.

В соответствии с делением мышечных волокон и мотонейронов на медленные и быстрые принято выделять три типа ДЕ.

Медленные, неутомляемые двигательные единицы (ДЕ I) состоят из

мотонейронов малого размера, имеющих низкий порог возбудимости, высокое

входное сопротивление. При деполяризации мелких нейронов возникает продолжительный разряд с незначительной адаптацией. Мотонейроны с такими свойствами называются тоническими. Небольшой диаметр аксона (до 5 -7 мкм) объясняет и невысокую, по сравнению с более толстыми, скорость проведения возбуждения. Мышечные волокна, входящие в ДЕ этого типа, относятся к красным волокнам (тип I), имеющим наименьший диаметр, скорость их сокращения минимальна, максимальное напряжение слабее, чем белых волокон (тип II), они характеризуются малой утомляемостью.

Быстрые, легко утомляемые двигательные единицы (тип ДЕ II В ) сформированы из крупных (до 100 мкм в поперечнике) мотонейронов, имеющих высокий порог возбуждения, диаметр их аксонов наибольший (до 15 мкм), скорость проведения возбуждения достигает 120 м/с, высокочастотная импульсация кратковременна и быстро спадает, т.к. происходит быстрая адаптация. Крупные мотонейроны относятся к нейронам фазического типа. Входящие в эти ДЕ мышечные волокна относятся ко II типу (белые волокна). Они способны развивать значительное напряжение, но быстро утомляются. Как правило, ДЕ этого типа содержат большое число мышечных волокон (большие ДЕ). Гладкий тетанус в них наблюдается при высокой частоте импульсации (порядка 50 имп/с), в отличие от ДЕ I, где это достигается при частоте до 20 имп/с.

Третий тип двигательных единиц - тип ДЕ II-A относится к промежуточному типу. В их состав входят как быстрые, так и медленные мышечные волокна. Мотонейроны - среднего калибра.

Скелетные мышцы, в зависимости от их функциональных особенностей, состоят из различного набора двигательных единиц. Тип ДЕ формируется в процессе онтогенеза и в зрелой мышце соотношение быстрых и медленных ДЕ уже не меняется. Как уже указывалось, в целой мышце мышечные волокна одной ДЕ перемежаются с волокнами нескольких других ДЕ. Перекрытие зон ДЕ обеспечивает, как считается, плавность сокращения мышцы, даже если каждая отдельная ДЕ не достигает состояния гладкого тетануса.

При выполнении мышечной работы нарастающей мощности, в активность всегда вначале включаются медленные двигательные единицы, которые развивают слабое, но тонко градуированное напряжение. Для выполнения значительных усилий, к первым подключаются крупные, сильные, но быстроутомляемые ДЕ второго типа.

Величина сокращения (сила мышцы) зависит от морфологических свойств и физиологического состояния мышцы:

1. Исходной длины мышцы (длинны покоя). Сила мышечного сокращения зависит от исходной длины мышцы или длины покоя. Чем сильнее мышца растянута в покое, тем сильнее сокращение (закон Франка-Старлинга).

2. Диаметра мышцы или поперечного сечения. Выделяют два диаметра:

а) анатомический диаметр - поперечное сечение мышц.

б) физиологический диаметр - перпендикулярное сечение каждого мышечного волокна. Чем больше физиологическое сечение, тем большей силой обладает мышца.

Сила мышцы измеряется весом максимального груза поднятого на высоту или максимальным напряжением, которое она способна развить в условиях изометрического сокращения. Измеряется в килограммах или ньютонах. Методика измерения силы мышцы называется динамометрия .

Выделяют два вида силы мышцы:

1. Абсолютная сила - отношение максимальной силы к физиологическому диаметру.

2. Относительная сила - отношение максимальной силы к анатомическому диаметру.

При сокращении мышца способна выполнять работу. Работа мышцы измеряется произведением поднятого груза на величину укорочения.

Работа мышцы характеризуется мощностью. Мощность мышцы определяется величиной работы в единицу времени и измеряется в ваттах.

Наибольшая работа и мощность достигается при средних нагрузках.

Мотонейрон с группой иннервируемых им мышечных волокон составляет двигательную единицу. Аксон мотонейронов может ветвиться и иннервировать группу мышечных волокон. Так, один аксон может иннервировать от 10 до 3000 мышечных волокон.

Различают двигательные единицы по строению и функциям.

По строению двигательные единицы делятся на:

1. Малые двигательные единицы, которые имеют малый мотонейрон и тонкий аксон, способный иннервировать 10-12 мышечных волокон. Например, мышцы лица, мышцы пальцев рук.

2. Большие двигательные единицы представлены крупным телом мотонейрона, толстым аксоном, который способен иннервировать более 1000 мышечных волокон. Например, четырехглавая мышца.

По функциональному значению двигательные единицы делятся на:

1. Медленные двигательные единицы. Они включают малые двигательные единицы, являются легко возбудимыми, характеризуются невысокой скоростью распространения возбуждения, в работу включаются первыми, но при этом они практически не утомляемы.

2. Быстрые двигательные единицы. Они состоят из больших двигательных единиц, плохо возбудимы, обладают большой скоростью проведения возбуждения. Обладают высокой силой и скоростью ответа. Например, мышцы боксера.


Эти особенности двигательных единиц обусловлены рядом свойств.

Мышечные волокна, которые входят в двигательные единицы, имеют сходные свойства и различия. Так, медленные мышечные волокна обладают:

1. Богатой капиллярной сетью.

4. В них содержится много жиров.

Благодаря этим особенностям эти мышечные волокна обладают высокой выносливостью, способны к небольшим по силе сокращениям, но длительным по времени.

Отличительные особенности быстрых мышечных волокон:

2. Обладают большей скоростью и силой сокращения.

В связи с этими особенностями быстрые мышечные волокна быстро утомляемы, но обладают большой силой и высокой скоростью ответа.

Быстрые

Медленные

Нейрон

Крупные мотонейроны

Мелкие мотонейроны

Возбудимость меньше

Возбудимость больше

Диаметр аксона больше

Диаметр аксона меньше

Скорость проведения возбуждения больше

Скорость проведения возбуждения меньше

Частота больше

Частота меньше

Мышечные волокна

Активность актомиозиновой АТФазы выше

Активность актомиозиновой АТФазы меньше

Плотность упаковки актомиозиновых филаментов выше

Плотность упаковки актомиозиновых филаментов меньше

Более выражен саркоплазматический ретикулум (депо кальция)

Менее выражен саркоплазматический ретикулум (депо кальция)

Латентный период после поступления ПД меньше

Латентный период после поступления ПД больше

Плотность кальциевой помпы выше

Плотность кальциевой помпы меньше

Быстрее сокращается и расслабляется

Медленнее сокращается и расслабляется

Выше активность ферментов гликолиза

Выше активность ферментов окисления

Быстрее восстановление АТФ

Восстановление АТФ медленнее, но экономичнее

1 моль глюкозы –2-3 молей АТФ

1 моль глюкозы 36-58 молей АТФ

Образуются недоокисленные субстраты, «закисление» - быстрое утомление

утомление менее выражено

Большая плотность капилляров – больше оксигенация, больше миоглобина

Двигательная единица

Менее возбудима, большая сила и скорость сокращения, большая утомляемость, низкая выносливость

Более возбудима, меньшая сила, скорость сокращения, малая утомляемость, высокая выносливость

спринтеры

В наружной мышце бедра медленные волокна от 13 до 96 %

Трехглавая мышца плеча 33%, двуглавая 49%, передняя большеберцовая 46%, камбаловидная 84 %

Нейрофизиологические основы метода электромиографии.

Электромиография - этот метод исследования нервно-мышечной системы посредством регистрации электрических потенциалов мышц. Хотя впервые электромиограмма (ЭМГ) была зарегистрирована с помощью телефонного устройства Н. Е. Введенским еще в 1884 г., а в 1907 г. удалось осуществить графическую запись ЭМГ человека, интенсивное развитие электромиографии в качестве клинической диагностической методики началось в 30-40-е годы XX столетия Определенная задержка прогресса в этой области по сравнению, например, с развитием электроэнцефалографии, объясняется высокими требованиями к качеству регистрации и точности воспроизведения истинных параметров электрических потенциалов в электромиографии. Создание высококачественных усилителей, дающих линейные характеристики в диапазоне высоких частот, и разработка методов катодной регистрации, обеспечивающей неискаженное воспроизведение высокочастотных составляющих электрического потенциала до диапазона 20000 Гц, привели к существенному прогрессу в области клинического применения электромиографии

При внутриклеточной регистрации потенциал действия выглядит как положительный пик, состоящий из быстрой деполяризации, длящейся около 1 мс, быстрой реполяризации, представляющей собой возвращение потенциала почти до уровня покоя, длящейся около 2 мс; затем следуют медленная реполяризация, небольшая следовая гиперполяризация и возврат потенциала к уровню покоя. В клинической электромиографии при внеклеточной регистрации макроэлектродом потенциал действия мышечного волокна представлен негативным пиком длительностью 1-3 мс.

Техника отведения и регистрации ЭМГ

Принципы техники отведения и регистрации ЭМГ не отличаются от техники электроэнцефалографии, электрокардиографии и других электрографических методов. Система состоит из электродов, отводящих потенциалы мышцы, усилителя этих потенциалов и регистрирующего устройства. В электромиографии используется два вида электродов - поверхностные и игольчатые. Поверхностные электроды представляют собой металлические пластины или диски площадью около 0,2 - 1 см 2 , обычно вмонтированные попарно в фиксирующие колодки, обеспечивающие постоянство расстояний между отводящими электродами, что важно для оценки амплитуды регистрируемой активности. Такие электроды накладывают на кожу над областью двигательной точки мышцы. Кожу перед наложением электрода протирают спиртом и смачивают изотоническим раствором хлорида натрия. Электрод фиксируют над мышцей с помощью резиновых полос, манжет или лейкопластыря. При необходимости длительного исследования на область кожно-электродного контакта наносят специальную электродную пасту, используемую в электроэнцефалографии. Большой размер и удаленность от мышечной ткани поверхностного электрода позволяют регистрировать с его помощью только суммарную активность мышц, представляющую собой интерференцию потенциалов действия многих сотен и даже тысяч мышечных волокон. При больших усилениях и сильных мышечных сокращениях поверхностный электрод регистрирует также активность соседних мышц. Все это не позволяет исследовать с помощью поверхностных электродов параметры отдельных мышечных потенциалов. В получаемой регистрации только ориентировочно оценивают частоту, периодичность и амплитуду ЭМГ. Преимущество поверхностных электродов являются атравматичность, отсутствие риска инфекции, простота обращения с электродами. Безболезненность исследования не налагает ограничений на количество исследуемых за один раз мышц, делает этот метод предпочтительным при обследовании детей, а также при физиологическом контроле в спортивной медицине или при исследовании с применением массивных и сильных движений.

Игольчатые электроды бывают концентрическими, биполярными и монополярными. В первом варианте электрод представлен полой иглой диаметром около 0,5 мм внутри которой проходит отделенный от нее слоем изоляции проволочный стержень из платины или нержавеющей стали. Разность потенциалов измеряют между корпусом иглы и кончиком центрального стержня. Иногда для увеличения локальности отведения иглу изолируют также снаружи, причем неизолированной оставляют только ее эллиптическую поверхность по плоскости среза. Площадь отводящей поверхности осевого стержня стандартного концентрического электрода составляет 0,07 мм 2 Приводимые в современных публикациях параметры потенциалов ЭМГ относятся к электродам этого типа и размера. При существенном увеличении площади контакта отводящего электрода параметры потенциалов могут существенно меняться. Это же относится к изменениям конструкции электрода (биполярный, монополярный, мультиэлектрод). Биполярный электрод содержит внутри иглы два одинаковых изолированных друг от друга стержня, между обнаженными кончиками, которых, отстоящими друг от друга на десятые доли миллиметра, измеряют разность потенциалов. Наконец, для монополярных отведений используют электроды, представляющие собой иглу, изолированную на всем протяжении, кроме заостренного конца, оголенного на протяжении 1-2 мм. Игольчатые электроды используют для исследования параметров ПД отдельных ДЕ и мышечных волокон. Отведение игольчатым электродом является основным в клинической миографии, ориентированной на диагностику первично-мышечных и нервно-мышечных заболеваний. Запись отдельных ПД в ДЕ и мышечных волокон позволяет точно оценить длительность, амплитуду, форму и фазность потенциала

Виды отведений

Независимо от типа электродов различают два способа отведения электрической активности - моно- и биполярный. В электромиографии монополярным называется такое отведение, когда один электрод располагается непосредственно вблизи исследуемого участка мышц, а второй - в удаленной от него области (кожа над костью, мочка уха и др.). Преимуществом монополярного отведения является возможность определить форму потенциала исследуемой структуры и истинную фазу отклонения потенциала. Недостаток заключается в том, что при большом расстоянии между электродами в запись вмешиваются потенциалы от других отделов мышцы или даже от других мышц. Биполярное отведение - это такое отведение, при котором оба электрода находятся на достаточно близком и одинаковом расстоянии от исследуемой области мышцы. Таковым является отведение с помощью биполярных или концентрических игольчатых электродов и с помощью пары поверхностных электродов, зафиксированных в одной колодке. Биполярное отведение в малой степени регистрирует активность от отдаленных источников потенциала, особенно при использовании игольчатых электродов. Влияние на разность потенциалов активности, поступающей от источника на оба электрода, приводит к искажению формы потенциала и невозможности определить истинную фазу потенциала. Тем не менее высокая степень локальности делает этот способ предпочтительным в клинической практике. Поскольку отведение поверхностными электродами в любом случае регистрирует интерференционную активность многих взаимоналагающихся ПД ДЕ, использование такого монополярного отведения не имеет смысла.

Кроме электродов, разность потенциалов которых подается на вход усилителя ЭМГ, на кожу исследуемого устанавливают поверхностный электрод заземления, который присоединяют к соответствующей клемме на электродной панели электромиографа. Разность потенциалов от электродов подается на вход усилителя напряжения. Усилитель снабжен ступенчатым переключателем коэффициента усиления, позволяющим регулировать уровень усиления в зависимости от амплитуды регистрируемой активности. Усиленную электрическую активность выводят не только на осциллоскоп, но и на громкоговоритель, что позволяет оценивать электрические потенциалы на слух

Общие принципы анализа ЭМГ и электромиографическая семиотика.

Анализ электромиографической кривой включает на первом этапе дифференциацию собственно электрических потенциалов мышц от возможных артефактов и затем, на основном этапе, оценку собственно ЭМГ. Предварительная оперативная оценка осуществляется по экрану осциллографа и акустическим феноменам, возникающим при выводе усиленной ЭМГ на громкоговоритель; окончательный анализ с количественной характеристикой ЭМГ и клиническим заключением производят по записи на бумаге или кинопленке.

Артефактными потенциалами в ЭМГ называются потенциалы, не связанные собственно с активностью мышечных элементов. При поверхностном отведении артефакты могут обусловливаться движением электрода вследствие его неплотной фиксации на коже, что приводит к появлению высокоамплитудных скачков потенциала неправильной формы. При игольчатом отведении аналогичные изменения потенциала могут возникать при прикосновении к электроду, соединительным проводам, при массивных движениях исследуемой мышцы. Наиболее часто встречающимся видом помехи является наводка 50 Гц от устройств эксплуатации промышленного тока. Она легко распознается по характерной синусоидальной форме и постоянной частоте и амплитуде. Возникновение ее может быть связано с большим электродным сопротивлением, что требует соответствующей обработки игольчатого электрода. При поверхностных электродах устранение наводки может быть достигнуто более тщательной очисткой кожи спиртом, использованием электродной пасты.

Анализ ЭМГ включает оценку формы, амплитуды и длительности потенциалов действия отдельных мышечных волокон и ДЕ и характеристику интерференционной активности, возникающей при произвольном мышечном сокращении. Форма отдельного колебания мышечного потенциала может быть моно-, ди-. три- или полифазной. Как и в электроэнцефалографии, монофазным называется такое колебание, при котором кривая совершает отклонение в одну сторону от изоэлектрической линии и возвращается к исходному уровню. Дифазным называется колебание, при котором кривая по совершении отклонения в одну сторону от изоэлектрической линии пересекает ее и совершает колебание в противоположной фазе; трехфазное колебание совершает соответственно три отклонения в противоположные стороны от изоэлектрической линии. Полифазным называется колебание, содержащее четыре и более фаз.

Стимуляционные методы в электромиографии

Кроме исследования электрической активности мышц в покое, при рефлекторных и произвольных сокращениях, современная комплексная методика клинической электромиографии включает исследование электрических реакций нервов и мышц на электрическую стимуляцию. Аппаратура и способы регистрации вызванной стимуляцией электрической активности те же, что и в обычной электромиографии. Для стимуляции нервов и мышц используют электростимуляторы. Стимуляцию мышц производят накожными электродами в двигательных точках, стимуляцию нервов согласно зонам их проекции на кожу. Стимулирующие электроды изготавливают в виде металлических дисков диаметром 6-8 мм, вмонтированных в металлическую обойму и смачиваемых изотоническим раствором хлорида натрия. Стимуляционные методы в диагностике нервно-мышечных заболеваний решают следующие основные задачи: 1) исследование прямой возбудимости мышц; 2) исследование нервно-мышечной передачи; 3) исследование состояния мотонейронов и их аксонов; 4) исследование состояния чувствительных волокон периферических нервов. С помощью электромиографии можно выявить, связано ли изменение электрической активности с поражением мотонейрона или синаптических и надсег-ментарных структур.

Электромиографические данные широко используются для уточнения топического диагноза и объективизации патологических или восстановительных процессов. Высокая чувствительность этого метода, позволяющая выявлять субклинические поражения нервной системы, делает его особенно ценным. Электромиография широко применяется не только в неврологической практике, но и при изучении поражения других систем, когда возникают вторично обусловленные нарушения двигательной функции (сердечно-сосудистые, обменные, эндокринные заболевания).

При произвольном расслаблении мышц улавливаются только очень слабые (до 10-15 мкВ) и частые колебания биопотенциала. Рефлекторные изменения мышечного тонуса характеризуются незначительным увеличением амплитуд частых, быстрых и изменчивых по ритму колебаний биопотенциалов (до 50 мкВ). При произвольных сокращениях мышц регистрируются интерференционные электромиограммы (с частыми высоковольтными биопотенциалами до 2000 мкВ).

Поражение клеток переднего рога спинного мозга вызывает изменение ЭМГ в зависимости от тяжести повреждения, характера течения заболевания и стадии его. При парезе наблюдаются уреженные, ритмические колебания с увеличением продолжительности до 15-20 мс. Поражение переднего корешка или периферического нерва вызывает снижение амплитуды и частоты биопотенциалов, изменение формы ЭМГ-кривой. Вялый паралич проявляется “биоэлектрическим молчанием”.

ЭМГ одной из мышц руки человека в норме. . Электромиограмма при поражении передних рогов спинного мозга.

Вопросы для самостоятельной внеаудиторной работы студентов:

    Состав двигательной единицы. Понятие моторного пула.

    Классификация двигательных единиц.

    Сравнительная характеристика быстрых и медленных двигательных единиц.

    Регуляция силы сокращения целостной мышцы. Принципы «вовлечения» двигательных единиц, фракционирования моторного пула, общего конечного пути.

    Метод электромиографии, принцип метода, медицинское значение метода ЭМГ.

    В тетради практических работ подготовить краткую характеристику метода ЭМГ (принцип метода, необходимая аппаратура, виды электродов и особенности их применения, медицинское значение метода).

Основным морфо-функциональным элементом нервно-мышечного аппарата скелетных мышц является двигательная единица (ДЕ). Она включает мотонейрон спинного мозга с иннервируемыми его аксоном мышечными волокнами. Внутри мышцы этот аксон образует несколько концевых веточек. Каждая такая веточка образует контакт - нервно-мышечный синапс на отдельном мышечном волокне. Нервные импульсы, идущие от мотонейрона, вызывают сокращения определенной группы мышечных волокон. Двигательные единицы мелких мышц, осуществляющих тонкие движения (мышцы глаза, кисти), содержат небольшое количество мышечных волокон. В крупных их в сотни раз больше. Все ДЕ в зависимости от функциональных особенностей делятся на 3 группы:

I. Медленные неутомляемые. Они образованы "красными" мышечными волокнами, в которых меньше миофибрилл. Скорость сокращения и сила этих волокон относительно небольшие, но они мало утомляемы. Поэтому их относят к тоническим. Регуляция сокращений таких волокон осуществляется небольшим количеством мотонейронов, аксоны которых имеют мало концевых веточек. Пример - камбаловидная мышца.

IIВ. Быстрые, легко утомляемые. Мышечные волокна содержат много миофибрилл и называются "белыми". Быстро сокращаются и развивают большую силу, но быстро утомляются. Поэтому их называют фазными. Мотонейроны этих ДЕ самые крупные, имеют толстый аксон с многочисленными концевыми веточками. Они генерируют нервные импульсы большой частоты. Мышцы глаза.

IIA. Быстрые, устойчивые к утомлению. Занимают промежуточное положение.

Физиология гладких мышц

Гладкие мышцы имеются в стенках большинства органов пищеварения, сосудов, выводных протоков различных желез, мочевыводящей системы. Они являются непроизвольными и обеспечивают перистальтику органов пищеварения и мочевыводящей системы, поддержание тонуса сосудов. В отличие от скелетных, гладкие мышцы образованы клетками чаще веретенообразной формы и небольших размеров, не имеющими поперечной исчерченности. Последнее связано с тем, что сократительный аппарат не обладает упорядоченным строением. Миофибриллы состоят из тонких нитей актина, которые идут в различных направлениях и прикрепляющихся к разным участкам сарколеммы. Миозиновые протофибриллы расположен рядом с актиновыми. Элементы саркоплазматического ретикулума не образуют систему трубочек. Отдельные мышечные клетки соединяются между собой контактами с низким электрическим сопротивлением - нексусами, что обеспечивает распространение возбуждения по всей гладкомышечной структуре. Возбудимость и проводимость гладких мышц ниже, чем скелетных.

Мембранный потенциал составляет 40-60 мВ, так как мембрана ГМК имеет относительно высокую проницаемость для ионов натрия. Причем у многих гладких мышц МП не постоянен. Он периодически уменьшается и вновь возвращается к исходному уровню. Такие колебания называют медленными волнами (МВ). Когда вершина медленные волны достигает критического уровня деполяризации, на ней начинают генерироваться потенциалы действия, сопровождающиеся сокращениями (рис). МВ и ПД проводятся по гладким мышцам со скоростью всего от 5 до 50 см/сек. Такие гладкие мышцы называют спонтанно активными, т.е. они обладают автоматией. Например за счет такой активности происходит перистальтика кишечника. Водители ритма кишечной перистальтики расположены в начальных отделах соответствующих кишок.

Генерация ПД в ГМК обусловлена входом в них ионов кальция. Механизмы электромеханического сопряжения также отличаются. Сокращение развивается за счет кальция, входящего в клетку во время ПД, Опосредует связь кальция с укорочением миофибрилл важнейший клеточный белок - кальмодулин.

Кривая сокращения также отличается. Латентный период, период укорочения, а особенно расслабления значительно продолжительнее, чем у скелетных мышц. Сокращение длится несколько секунд. Гладким мышцам, в отличие от скелетных свойственно явление пластического тонуса. Это способность длительное время находится в состоянии сокращения без значительных энергозатрат и утомления. Благодаря этому свойству поддерживается форма внутренних органов и тонус сосудов. Кроме того гладкомышечные клетки сами являются рецепторами растяжения. При их натяжении начинают генерироваться ПД, что приводит к сокращению ГМК. Это явление называется миогенным механизмом регуляции сократительной активности.