Функциональная единица мышечной клетки. Строение скелетной мышечной ткани

Тема: "Мышечные ткани"

Вопрос 1 . Общие структурные особенности мышечных тканей

Объединяет несколько разных видов, но основное свойство общее – сократимость. Поэтому все мышечные ткани имеют сходные структурные особенности:

1. Клетки вытянутой формы и объединены в тяжи, или даже в симпласты (мышечные волокна).

2. Цитоплазма заполнена миофиламентами – нитями из сократительных белков (миозин и актин), взаимное скольжение которых обеспечивает сокращение. Характер расположения миофиламентов зависит от вида мышечной ткани.

3. Высокие энергетические запросы требуют множества митохондрий, включений миоглобина, жира и гликогена.

4. Гладкая ЭПС специализирована на накоплении Сa 2+ , который иницииирует сокращение.

5. Плазмолемма мышечных клеток обладает возбудимостью.

Согласно морфо-функциональной классификации выделяют:

1. Поперечно-полосатые мышечные ткани. В их цитоплазме главный компонент – миофибриллы (органеллы общего значения), который и создают эффект исчерченности. Этих тканей два вида:

Скелетная. Образуется из миотомов сомитов.

Сердечная. Образуется из висцерального листка спланхнотома.

2. Гладкая мышечная ткань. Ее клетки не содержат миофибрилл. Образуется из мезенхимы.

К этой же группе относят миоэпителиальные клетки, которые имеют эктодермальное происхождение и мышцы радужки глаза, которые имеют нейральное происхождение.

Вопрос 2 . Скелетная мышечная ткань Организация мышечного волокна

Структурно-функциональной единицей этой ткани является мышечное волокно. Это длинный цитоплазматический тяж со множеством ядер, которые лежат сразу под плазмолеммой. Мышечное волокно в эмбриогенезе образуется при слиянии клеток – миобластов, т.е., представляет собой клеточное производное –симпласт.

Мышечное волокно сохраняет общий план клеточной организации. В нем есть все органеллы общего значения, много включений, а также органеллы специального значения. Все компоненты волокна адаптированы для выполнения главной функции – сокращения – и подразделяются на несколько аппаратов.

Сократительный аппарат состоит из миофибрилл. Это органеллы, которые тянутся вдоль всего волокна и занимают большую часть всего объема цитоплазмы. Они способны значительно изменять свою длину.

Аппарат белкового синтеза представлен, в основном, свободными рибосомами и специализирован на выработке белков для построения миофибрилл.

Аппарат передачи возбуждения образован саркотубулярной системой. Она включает гладкую ЭПС и Т-трубочки. Гладкая ЭПС (саркоплазматическая сеть) имеет вид плоских цистерн, которые оплетают все миофибриллы. Она служит для накопления Сa 2+ . Ее мембраны способны быстро выпускать кальций наружу, что необходимо для укорочения миофибрилл, а затем активно закачивает его внутрь. Наружная мембрана мышечного волокна (сарколемма) образует многочисленные трубчатые впячивания, пронизывающие все волокно в поперечных направлениях. Их совокупность называют Т-системой. Т-трубочки тесно контактируют с мембранами ЭПС, образуя единую саркотубулярную систему. К каждой Т-трубочке …..

Энергетический аппарат составлен митохондриями и включениями. Митохондрии крупные вытянутые и лежат, в основном цепочками, заполняя все пространство между миофибриллами. Субстратами для получения АТФ служит гликоген и липидные капли. Включения миоглобина – специфического мышечного пигмента, обеспечивают волокна кислородом в случае длительной и напряженной работы мышц.

Лизосомальный аппарат развит слабо. Служит, главным образом, для процессов внутриклеточной регенерации.

Вопрос 3 Механизм мышечного сокращения

Для его понимания необходимо ознакомиться с молекулярной организацией миофибрилл – органелл, специализированных на сокращении. Это длинные тяжи, образующие продольные пучки по тысяче и более миофибрилл, которые почти полностью заполняют цитоплазму волокна.

Каждая миофибрилла построена из огромного числа актиновых и миозиновых филаментов.

Тонкие актиновые нити построены из глобулярных молекул белка актина, которые объединяются в две спирально закрученные цепочки. Более толстая миозиновая нить построена из 300-400 молекул белка миозина. Каждая молекула включает длинный хвост, к которому с одного края прикреплена подвижная головка. Головки могут менять угол своего наклона. Хвосты множества молекул укладываются плотным пучком, формируя стержень филамента. Головки при этом остаются на поверхности. На двух краях нити головки лежат разнонаправленно.

Благодаря дополнительным белкам, миофиламенты имеют стабильный диаметр и стабильную длину около 1 мкм. Филаменты одного вида образуют аккуратно подогнанные пучки или стопки. Миофибриллы образованы из многократно чередующихся пучков актиновых и миозиновых нитей. Высокая упорядоченность в расположении миофиламентов достигается с помощью различных белков цитоскелета. Например, белок актинин формирует Z-линию (телофрагму), к которой с обеих сторон присоединяются края тонких актиновых нитей. Так образуется актиновая стопка. Другие белки организуют в стопку толстые миозиновые нити, прошнуровывая их в середине. Они образуют М-линию (мезофрагму). При чередовании стопок свободные концы тонких и толстых нитей заходят друг за друга, обеспечивая взаимное скольжение друг относительно друга в момент сокращения. В результате такой организации в миофибрилле многократно повторяются светлые участки, называемые I-дисками (изотропные), и темные участки, называемые А-дисками (анизотропные). Это и создает эффект поперечной исчерченности. Изотропные участки соответствуют центральной части актиновой стопки и содержат только тонкие нити. Анизотропные диски соответствуют целой миозиновой стопке, и в них входят чисто миозиновая часть (Н-полоска) и те участки, где концы тонких и толстых нитей перекрываются.

Участок между двумя Z-линиями называют саркомером. Саркомер является структурной единицей миофибриллы. (20 тысяч саркомеров на миофибриллу). Строгая организация миофибрилл обеспечивается широким набором различных белков цитоскелета.

При сокращении длина миофибриллы уменьшается за счет одновременного укорочения всех I-дисков. Длина каждого саркомера при этом уменьшается в 1,5-2 раза. Процесс сокращения объясняется теорией скольжения Хаксли, согласно которой в момент сокращения свободные, заходящие друг за друга концы актиновых и миозиновых нитей вступают в молекулярные взаимодействия и глубже задвигаются друг относительно друга. Скольжение начинается с того, что выступающие миозиновые головки образуют мостики с активными центрами актиновых филаментов. Затем угол наклона головки уменьшается, мостики совершают как бы гребковые движения, смещая и актиновую нить. После этого мостик размыкается, что сопровождается гидролизом 1 молекулы АТФ. Связывание миозиновых головок с актиновой нитью регулируется специальными белками. Это тропонин и тропомиозин, которые встроены в актиновую нить, и препятствуют контакту с миозиновыми головками. При повышении в гиалоплазме концентрации Са 2+ происходит изменение конформационного состояния этих регуляторных белков и их блокирующее действие снимается. Гребковые движения повторяются сотни раз за одно мышечное сокращение. Расслабление наступает только после того, как снизится концентрация Ca 2+ .

Вопрос 4. Аппарат передачи возбуждения

Сокращение запускается нервным импульсом, который через моторную бляшку передается на мембрану мышечного волокна, вызывая волну деполяризации, которая мгновенно охватывает и Т-трубочки. Они тянутся от поверхности сквозь все волокно, по пути колечками окружая миофибриллы. Полости гладкой ЭПС, заполненные кальцием, чехлом оплетают миофибриллы, тесно контактируя с Т-трубочками. С двух сторон к каждой Т-трубочке прилежат обширные мембранные полости ЭПС (терминальные цистерны). Такой комплекс называют триадой. На каждый саркомер приходится две триады. Благодаря мембранным контактам деполяризация Т-трубочек изменяет состояние мембранных белков ЭПС, что приводит к открытию кальциевых каналов и выходу кальция в гиалоплазму. Происходит сокращение. Триады сопрягают процессы возбуждения и сокращения. После выброса специальные мембранные насосы активно закачивают Ca 2+ обратно в ЭПС, где он соединяется с Са-связывающим белком.

Вопрос 5. Сердечная мышечная ткань

образует мышечную стенку сердца – миокард. Ее морфо-функциональная единица – отдельная клетка – кардиомиоцит. Клетки соединены друг с другом особыми структурами – вставочными дисками, и в результате образуется трехмерная сеть из клеточных тяжей (функциональный синцитий), что обеспечивает синхронность сокращения во время систолы.

Кардиомиоциты – вытянутые клетки с несколькими ответвлениями, покрытые поверх плазмолеммы базальной мембраной. Их ядра (1 или 2) лежат центрально.

В составе миокарда выделяют несколько популяций кардиомиоцитов:

А) сократительные или рабочие

Б) проводящие

В) секреторные

Вопрос 6. Рабочие кардиомиоциты

составляют основную массу миокарда и обеспечивают сокращение. Их организация сходна с мышечными волокнами, но имеет ряд отличий.

Сократительный аппарат. Миофибриллы в целом имеют продольное направление, но многократно анастомозируют друг с другом.

Саркотубулярная сеть развита слабее. Т-трубочки более широкие, лежат реже и каждая контактирует только с одной цистерной ЭПС (диада). При возбуждении часть Ca 2+ поступает в гиалоплазму из межклеточного пространство через плазмолемму и мембраны Т-трубочек и лишь после этого происходит Са-индуцированный выброс Ca 2+ из ЭПС.

Энергетический аппарат. Митохондрии много, они крупные с плотно упакованными кристами, поскольку энергетические запросы миокарда очень высоки. Между собой они объединены особыми соединениями – межмитохондриальными контактами и образуют единую функциональную систему – митохондрион. Такая интеграция исключительно важна для быстрого и синхронного сокращения миокарда. Субстраты для получения АТФ поставляются липидными каплями, включениями гликогена и миоглобина. Сами мотохондрии способны накапливать кальций.

Концы соседних клеток или их стыкующиеся ответвления соединяются вставочными дисками. Диск имеет ступенчатую форму. Поперечные участки образованы десмосомами и придают соединению механическую прочность. Продольные участки содержат множество щелевых контактов – нексусов, которых особенно много в предсердиях. Благодаря ионным каналам нексусов возбуждение быстро распространяется вдоль всей мышцы.

Миокард обильно кровоснабжается. Все промежутки между кардиомиоцитами заполнены рыхлой соединительной тканью, в которой ветвятся капилляры. Здесь же заканчиваются ветвления нервных волокон вегетативной нервной системы. В отличие от скелетной мышечной ткани здесь образуются не нейро-мышечные синапсы (моторные бляшки), а лишь варикозные расширения. На сократительную активность кардиомиоцитов нервная система оказывает лишь регуляторной влияние. Вегетативная система лишь увеличивает (симпатический отдел) или уменьшает (парасимпатический отдел) частоту и силу сердечных сокращений.

Ритмичная генерация импульсов, которые заставляют сердце постоянно сокращаться, обеспечивается специальными клетками самого миокарда. Совокупность этих клеток называется проводящей системой сердца, а способность сердца сокращаться независимо от нервных стимулов – автоматией сердца.

Вопрос 7 . Проводящая система

включает специализированные кардиоммиоциты, называемые также атипичными. К ним относят:

Пейсмекерные клетки или водители ритма. Их главное свойство – неустойчивые потенциал покоя наружной мембраны. Благодаря К/Na -насосу натрия всегда больше внутри клетки, а калия снаружи. Эта разность ионов и создает электрический потенциал по обе стороны плазмолеммы. При определенной стимуляции в мембране открываются натриевые каналы, натрий устремляется наружу и мембрана деполяризуется. У пейсмекерных клеток благодаря постоянной небольшой утечке ионов плазмолемма регулярно деполяризуется без всяких внешних сигналов. Это вызывает потенциал действия, распространяющийся и на соседние клетки, вызывая их сокращение. Главные водители ритма – это кардиомиоциты синусно-предсердного узла. Каждую минуту они генерируют 60-90 импульсов. Водители ритма второго порядка образуют предсердно-желудочковый узел. Они генерируют импульсы с частотой 40 импульсов в минуту, и в норме их активность подавляется главными пейсмекерами. Пейсмекерные кардиомиоциты – мелкие светлые клетки с крупным ядром. Их сократительный аппарат развит слабо.

Проводящие кардиомиоциты обеспечивают быструю передачу возбуждения от водителей ритма к рабочим кардиомиоцитам. Эти клетки объединены в длинные тяжи, формирующие пучок Гиса и волокна Пуркинье. Пучок Гиса составлен клетками среднего размера с редкими длинными извилистыми миофибриллами и мелкими митохондриями. Волокна Пуркинье содержат самые крупные кардиомиоциты, которые могут контактировать сразу с несколькими рабочими клетками. Миофибриллы здесь образуют редкую неупорядоченную сеть, Т-система не развита. Вставовных дисков нет, но клетки объединены множеством нексусов, что обеспечивает высокую скорость проведения импульсов.

Вопрос 8. Секреторные кардиомиоциты

В предсердиях встречаются отросчатые клетки, в которых хорошо развита грЭПС, комплекс Гольджи и содержатся секреторные гранулы. Миофибриллы развиты очень слабо, поскольку основной функцией является выработка гормона (натрийуретический фактор), регулирующего обмен электролитов и артериальное давление.

Вопрос 9 . Гладкая мышечная ткань

Построена из гладких миоцитов. Сократительные филаменты в этих клетках не имеют жесткой упорядоченности и миофибриллы в них не образуются. Вследствие этого отсутствует и поперечная исчерченность. Гладкие миоциты довольно крупные клетки веретеновидной формы, покрытые сверху базальной мембраной, которая соединена с межклеточным веществом. В центре вытянутое ядро, у полюсов грЭПС, комплекс Гольджи и рибосомы. Клетки секретируют компоненты межклеточного вещества для своей наружной оболочки, а также некоторые ростовые факторы и цитокины. Много мелких митохондрий. Саркоплазматическая сеть (гладкая ЭПС) развита слабо, она выполняет роль кальциевого депо. Системы Т-трубочек нет, и их функцию выполняют кавеолы. Кавеолы – это мелкие впячивания плазмолеммы в виде пузырьков. Они содержат высокие концентрации кальция, который захватывают из межклеточного пространства. В момент возбуждения Ca 2+ из кавеол выходит наружу, что инициирует освобождение Ca 2+ из саркоплазматической сети.

Организация и функционирование сократительного аппарата своеобразны. Актиновые и миозиновые филамента очень многочисленны, но не образуют миофибрилл. Для их упорядочивания в миоците существует система плотных телец. Это округлые опорные образования из белка a-актинина и десмина. В них одним концом закреплено по 10-20 тонких актиновых филаментов. Одни тельца образуют прикрепительные пластинки в сарколемме, другие цепочками лежат прямо в гиалоплазме. Так в миоците формируется стабильная сеть из актиновых нитей. Толстые миозиновын нити имеют разную длину и очень лабильны.

Каждому сокращению предшествует выброс кальция, который связывается с особым белком – кальмодулином. Это активирует фермент, обеспечивающий быструю сборку миозиновых филаментов. Они встраиваются между актиновыми нитями, образуют с ними мостики, и их головки начинают совершать гребковые движения. При взаимном скольжении нитей плотные тельца сближаются, а клетка в целом укорачивается. Таким образом в гладких миоцитах кальций взаимодействует с миозиновыми нитями, а не с актиновыми, как в поперечно-полосатых. АТФ-азная активность миозина намного ниже. Вместе с постоянной сборкой и разборкой миозиновых филаментов это приводит к тому, что гладкомышечные клетки сокращаются медленнее, но могут длительно поддерживать этот состояние (тонические сокращения). Между собой клетки объединены рвст, которая вплетается в их базальные мембраны, а также различными межклеточными контактами, в том числе и нексусами. Сократительная активность миоцитов находится под контролем нервных и гуморальных факторов. В соединительно-тканных прослойках расположены варикозные расширения аксонов вегетативной нервной системы. Их медиаторы деполяризуют ближайшие миоциты, а к остальным возбуждение передается по щелевидным контактам.

Благодаря широкому набору мембранных рецепторов гладкие миоциты чувствительны ко многим биологически активным веществам (адреналин, гистамин и т.д.) и реагируют по разному, в зависимости от органной специфичности.

Вопрос 10. Гистогенез и регенерация

Скелетная мышечная ткань. Из миотома сомитов дифференцируются одноядерные активно делящиеся клетки – миобласты. Они сливаются в цепочки - мышечные трубочки, многочисленные ядра которых уже не делятся. В трубочках начинается активный синтез сократительных белков и формирование миофибрилл, которые постепенно заполняют всю цитоплазму, оттесняя ядра на периферию. Образуется мышечное волокно, внутри которго миофибриллы постоянно обновляются. Между плазмолеммой и покрывающей ее базальной мембраной кое-где сохраняются одноядерные клетки – миосаттелиты – камбиальные клетки, которые могут делиться и включать свои ядра в состав волокон. Рост мышечной ткани у взрослого человека происходит, в основном за счет гипертрофии волокон, а их число остается постоянным. После повреждения миосаттелиты могут сливаться, образуя новые волокна.

Сердечная мышечная ткань образуется из миоэпикардиальной пластинки в составе висцерального листка спланхнотома. Деление кардиомиоцитов заканчивается вскоре после рождения, но в последующие 10 лет могут формироваться полиплоидные и двуядерные клетки. Поскольку камбиальных клеток нет, то возможна только внутриклеточная регенерация и гипертрофия кардиомиоцитов. Она происходит в результате длительных физических нагрузок, либо в патологических состояниях (гипертония, пороки сердца и т.д.). После гибели миоцитов (инфркт миокарда) формируется соединительно-тканный рубец. В последнее время установлено, что отдельные предсердные миоциты сохраняют способность к митозам.

Гладкомышечная ткань регенерирует как за счет гипертрофии, так и за счет гиперплазии

Скелетная мышечная ткань

Схема скелетной мышцы в разрезе.

Строение скелетной мышцы

Скелетная (поперечно-полосатая) мышечная ткань - упругая, эластичная ткань , способная сокращаться под влиянием нервных импульсов : один из типов мышечной ткани . Образует скелетную мускулатуру человека и животных, предназначенную для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания. Мышцы состоят на 70-75 % из воды.

Гистогенез

Источником развития скелетной мускулатуры являются клетки миотомов - миобласты. Часть из них дифференцируется в местах образования так называемых аутохтонных мышц. Прочие же мигрируют из миотомов в мезенхиму ; при этом они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникает 2 клеточные линии. Клетки первой сливаются, образуя симпласты - мышечные трубки (миотубы). Клетки второй группы остаются самостоятельными и дифференцируются в миосателлиты (миосателлитоциты).

В первой группе происходит дифференцировка специфических органелл миофибрилл , постепенно они занимают большую часть просвета миотубы, оттесняя ядра клеток к периферии.

Клетки второй группы остаются самостоятельными и располагаются на поверхности мышечных трубок.

Строение

Структурной единицей мышечной ткани является мышечное волокно. Оно состоит из миосимпласта и миосателлитоцитов (клеток-спутниц), покрытых общей базальной мембраной .

Длина мышечного волокна может достигать нескольких сантиметров при толщине в 50-100 микрометров.

Строение миосимпласта

Строение миосателлитов

Миосателлиты - одноядерные клетки, прилежащие к поверхности миосимпласта. Эти клетки отличаются низкой дифференцировкой и служат взрослыми стволовыми клетками мышечной ткани. В случае повреждения волокна или длительном увеличении нагрузки клетки начинают делиться, обеспечивая рост миосимпласта.

Механизм действия

Функциональной единицей скелетной мышцы является моторная единица (МЕ). МЕ включает в себя группу мышечных волокон и иннервирующий их мотонейрон . Число мышечных волокон, входящих в состав одной МЕ, варьирует в разных мышцах. Например, там, где требуется тонкий контроль движений (в пальцах или в мышцах глаза), Моторные единицы небольшие, они содержат не более 30 волокон. А в икроножной мышце, где тонкий контроль не нужен, в МЕ насчитывается более 1000 мышечных волокон.

Моторные единицы одной мышцы могут быть разными. В зависимости от скорости сокращения моторные единицы разделяют на медленные (slow (S-МЕ)) и быстрые (fast (F-МЕ)). А F-МЕ в свою очередь делят по устойчивости к утомлению на устойчивые к утомлению (fast-fatigue-resistant (FR-МЕ)) и быстроутомляемые (fast-fatigable (FF-МЕ)).

Соответствующим образом подразделяют иннервирующие данные МЕ мотонейроны. Существуют S-мотонейроны (S-МН), FF-мотонейроны (F-МН) и FR -мотонейроны (FR-МН) S-МЕ характеризуются высоким содержанием белка миоглобина, который способен связывать кислород (О2). Мышцы, преимущественно состоящие из МЕ этого типа, за их темно-красный цвет называются красными. Красные мышцы выполняют функцию поддержания позы человека. Предельное утомление таких мышц наступает очень медленно, а восстановление функций происходит наоборот, очень быстро.

Такая способность обуславливается наличием миоглобина и большого числа митохондрий . МЕ красных мышц, как правило, содержат большое количество мышечных волокон. FR-МЕ составляют мышцы, способные выполнять быстрые сокращения без заметного утомления. Волокна FR-ME содержат большое количество митохондрий и способны образовывать АТФ путем окислительного фосфорилирования.

Как правило, число волокон в FR-ME меньше, чем в S-ME. Волокна FF-ME характеризуются меньшим содержанием митохондрий, чем в FR-ME, а также тем, что АТФ в них образуется за счет гликолиза . В них отсутствует миоглобин , поэтому мышцы, состоящие из МЕ этого типа, называют белыми. Белые мышцы развивают сильное и быстрое сокращение, но довольно быстро утомляются.

Функция

Данный вид мышечной ткани обеспечивает возможность выполнения произвольных движений. Сокращающаяся мышца воздействует на кости или кожу, к которым она прикрепляется. При этом один из пунктов прикрепления остаётся неподвижным - так называемая точка фиксации (лат. púnctum fíxsum ), которая в большинстве случаев рассматривается в качестве начального участка мышцы. Перемещающийся фрагмент мышцы называют подвижной точкой , (лат. púnctum móbile ), которая является местом её прикрепления. Тем не менее, в зависимости от выполняемой функции, punctum fixum может выступать в качестве punctum mobile , и наоборот.

Примечания

См. также

Литература

  • Ю.И. Афанасьев, Н.А. Юрина, Е.Ф. Котовский Гистология. - 5-е изд., перераб. и доп.. - Москва: Медицина, 2002. - 744 с. - ISBN 5-225-04523-5

Ссылки

  • - Механизмы развития мышечной ткани (англ.)

Wikimedia Foundation . 2010 .

Глава 9. МЫШЕЧНЫЕ ТКАНИ

Глава 9. МЫШЕЧНЫЕ ТКАНИ

Мышечными тканями (textus muscularis) называют ткани, различные по строению и происхождению, но сходные по способности к сокращениям. Они обеспечивают перемещения в пространстве организма в целом, его частей и движение органов внутри организма (сердце, язык, кишечник и др.).

Свойством сокращаться с изменением формы обладают клетки многих тканей, но в мышечных тканях эта способность становится главной функцией.

9.1. ОБЩАЯ МОРФОФУНКЦИОНАЛЬНАЯ ХАРАКТЕРИСТИКА И КЛАССИФИКАЦИЯ

Основные морфологические признаки элементов мышечных тканей - удлиненная форма, наличие продольно расположенных миофибрилл и миофиламентов - специальных органелл, обеспечивающих сократимость, расположение митохондрий рядом с сократительными элементами, наличие включений гликогена, липидов и миоглобина.

Специальные сократительные органеллы - миофиламенты или миофи-бриллы, обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков - актина и миозина, при обязательном участии ионов кальция. Митохондрии обеспечивают эти процессы энергией. Запас источников энергии образуют гликоген и липиды. Миоглобин - белок, обеспечивающий связывание кислорода и создание его запаса на момент сокращения мышцы, когда сдавливаются кровеносные сосуды (поступление кислорода при этом резко снижается).

Классификация. В основу классификации мышечных тканей положены два принципа - морфофункциональный и гистогенетический. В соответствии с морфофункциональным принципом, в зависимости от структуры органелл сокращения, мышечные ткани подразделяют на две подгруппы.

Первая подгруппа - поперечнополосатые (исчерченные) мышечные ткани (textus muscularis striatus). В цитоплазме их элементов миозиновые филамен-

ты постоянно полимеризованы, образуют с актиновыми нитями постоянно существующие миофибриллы. Последние организованы в характерные комплексы - саркомеры. В соседних миофибриллах структурные субъединицы саркомеров расположены на одном уровне и создают поперечную исчер-ченность.

Вторая подгруппа - гладкие (неисчерченные) мышечные ткани (textus muscularis nonstriatus). Эти ткани характеризуются тем, что вне сокращения миозиновые филаменты деполимеризованы. В присутствии ионов кальция они полимеризуются и вступают во взаимодействие с филаментами актина. Образующиеся при этом миофибриллы не имеют поперечной исчерченности: при специальных окрасках они представлены равномерно окрашенными по всей длине (гладкими) нитями.

В соответствии с гистогенетическим принципом в зависимости от источников развития (эмбриональных зачатков) мышечные ткани и мышечные элементы подразделяются на: соматические (миотомные), целомические (из миоэпикардиальной пластинки висцерального листка спланхнотома), мезенхимные (из десмального зачатка в составе мезенхимы), нейральные (из нервной трубки), эпидермальные (из кожной эктодермы и из прехор-дальной пластинки).

9.2. ПОПЕРЕЧНОПОЛОСАТЫЕ МЫШЕЧНЫЕ ТКАНИ

Имеется две основные разновидности поперечнополосатых (исчерченных) тканей - скелетная (миотомная) и сердечная (целомическая).

9.2.1. Скелетная мышечная ткань

Гистогенез. Источником развития элементов скелетной (соматической) поперечнополосатой мышечной ткани (textus muscularis striatus sceletalis) являются стволовые клетки миотомов - промиобласты. Одни из них дифференцируются на месте и участвуют в образовании так называемых аутохтон-ных мышц. Другие клетки мигрируют из миотомов в мезенхиму. Они уже детерминированы, хотя внешне не отличаются от других клеток мезенхимы. Их дифференцировка продолжается в местах закладки других мышц тела. В ходе дифференцировки возникают две клеточные линии. Клетки одной из линий сливаются, образуя удлиненные симпласты - мышечные трубочки (миотубы). В них происходит дифференцировка специальных органелл - миофибрилл (рис. 9.1). В это время в миотубах отмечается хорошо развитая гранулярная эндоплазматическая сеть. Миофибриллы сначала располагаются под плазмолеммой, а затем заполняют большую часть миотубы. Ядра, напротив, из центральных отделов смещаются к периферии. Клеточные центры и микротрубочки при этом полностью исчезают. Гранулярная эндо-

Рис. 9.1. Гистогенез скелетной мышечной ткани (по А. А. Клишову):

а - промиобласты; б - миосимпласт; в - мышечная трубочка; г - зрелое мышечное

волокно. 1 - миосателлитоцит; 2 - ядро миосимпласта; 3 - миофибриллы

плазматическая сеть в значительной степени редуцируется. Такие дефинитивные структуры называют миосимпластами.

Клетки другой линии остаются самостоятельными и дифференцируются в миосателлитоциты. Эти клетки располагаются на поверхности миосимпластов. Миосателлитоциты, размножаясь, сливаются с миосимпластами, участвуя таким образом в создании оптимального ядерно-

Рис. 9.2. Строение поперечнополосатой мышечной ткани (микрофотография):

1 - мышечные волокна; 2 - сарколемма; 3 - саркоплазма и миофибриллы; 4 - ядра

миосимпласта. Окраска - железный гематоксилин

саркоплазменного отношения, необходимого для синтеза специфических белков симпласта.

Строение. Основной структурной единицей скелетной мышечной ткани является мышечное волокно, состоящее из миосимпласта и миосател-литоцитов, покрытых общей базальной мембраной (рис. 9.2-9.4). Длина всего волокна может измеряться сантиметрами при толщине 50-100 мкм. Комплекс, состоящий из плазмолеммы миосимпласта и базальной мембраны, называют сарколеммой.

Строение миосимпласта. Миосимпласт имеет множество продолговатых ядер, расположенных непосредственно под плазмолеммой. Их количество в одном симпласте может достигать нескольких десятков тысяч (см. рис. 9.2). У полюсов ядер располагаются органеллы общего значения - комплекс Гольджи и небольшие фрагменты агранулярной эндоплазматической сети. Миофибриллы заполняют основную часть миосимпласта и расположены продольно (см. рис. 9.3).

Саркомер - структурная единица миофибриллы. Каждая миофибрилла имеет поперечные темные и светлые диски с неодинаковым лучепреломлением (анизотропные А-диски и изотропные I-диски). Каждая миофибрил-ла окружена продольно расположенными и анастомозирующими между собой петлями агранулярной эндоплазматической сети - саркоплазмати-ческой сети. Соседние саркомеры имеют общую пограничную структуру - Z-линию (рис. 9.5). Она построена в виде сети из белковых фибриллярных молекул, среди которых существенную роль играет альфа-актинин. С этой сетью связаны концы актиновых филаментов. От соседних Z-линий акти-новые филаменты направляются к центру саркомера, но не доходят до его середины. Филаменты актина объединены с Z-линией и нитями миозина

Рис. 9.3. Схема ультрамикроскопического строения миосимпласта (по Р. В. Крстичу, с изменениями) (а): 1 - саркомер; 2 - анизотропный диск (полоса А); 2а - изотропный диск (полоса I); 3 - линия М (мезофрагма) в середине анизотропного диска; 4 - линия Z (телофрагма) в середине изотропного диска; 5 - митохондрии; 6 - сар-коплазматическая сеть; 6а - конечная цистерна; 7 - поперечная трубочка (Т-трубочка); 8 - триада; 9 - сарколемма; б - схема пространственного расположения митохондрий в симпласте. Верхняя и нижняя плоскости рисунка ограничиваютанизотропныйдисксарко-мера (по Л. Е. Бакеевой, В. П. Скулачеву, Ю. С. Ченцову); в - эндомизий. Сканирующая электронная микрофотография, увеличение 2600 (препарат Ю. А. Хорошкова): 1 - мышечные волокна; 2 - коллагеновые фибриллы

фибриллярными нерастяжимыми молекулами небулина. Посередине темного диска саркомера располагается сеть, построенная из миомиозина. Она образует в сечении М-линию. В узлах этой М-линии закреплены концы мио-зиновых филаментов. Другие их концы направляются в сторону Z-линий и

Рис. 9.4. Поверхностный участок миосимпласта и миосателлитоцит. Электронная микрофотография, увеличение 10 000 (препарат В. Л. Горячкиной и С. Л. Кузнецова): 1 - базальная мембрана; 2 - плазмолемма; 3 - ядро миосимпласта; 4 - ядро миоса-теллитоцита; 5 - миофибриллы; 6 - канальцы агранулярной эндоплазматической (саркоплазматической) сети; 7 - митохондрии; 8 - гликоген

Рис. 9.5. Саркомер (схема):

1 - линия Z; 2 - линия М; 3 - филаменты актина; 4 - филаменты миозина; 5 - фибриллярные молекулы титина (по Б. Албертс, Д. Брей, Дж. Льюис и др., с изменениями)

Рис. 9.6. Конформационные изменения, влекущие за собой взаимное смещение филаментов актина и миозина:

а-в - последовательные изменения пространственных отношений. 1 - актин; 2 - головка молекулы миозина (по Б. Албертс, Д. Брей, Дж. Льюис и соавт., с изменениями)

располагаются между филаментами актина, но до самих Z-линий тоже не доходят. Вместе с тем эти концы фиксированы по отношению к Z-линиям растяжимыми гигантскими белковыми молекулами титина.

Молекулы миозина имеют длинный хвост и на одном из его концов две головки. При повышении концентрации ионов кальция в области присоединения головок (шарнирный участок) молекула изменяет свою конфигурацию (рис. 9.6). При этом (поскольку между миозиновыми филаментами расположены актиновые) головки миозина связываются с актином (при участии вспомогательных белков - тропомиозина и тропонина). Затем головка миозина наклоняется и тянет за собой актиновую молекулу в сторону М-линии. Z-линии сближаются, саркомер укорачивается.

Альфа-актининовые сети Z-линий соседних миофибрилл связаны друг с другом промежуточными филаментами. Они подходят к внутренней поверхности плазмолеммы и закрепляются в ее кортикальном слое, так что саркомеры всех миофибрилл располагаются на одном уровне. Это и создает при наблюдении в микроскоп впечатление поперечной исчерченности всего волокна.

Источником ионов кальция служат цистерны агранулярной эндоплазма-тической сети. Они вытянуты вдоль миофибрилл около каждого саркоме-ра и образуют саркоплазматическую сеть. Именно в ней аккумулируются ионы кальция, когда миосимпласт находится в расслабленном состоянии. На уровне Z-линий (у амфибии) или на границе А- и I-дисков (у млекопитающих) канальцы сети меняют направление и располагаются поперечно, образуя расширенные терминальные или латеральные (L) цистерны.

С поверхности в глубину миосимпласта плазмолемма образует длинные трубочки, идущие поперечно (Т-трубочки) на уровне границ между темными и светлыми дисками. Когда миосимпласт получает сигнал о начале сокращения, он перемещается по плазмолемме в виде потенциала действия и распространяется на мембрану Т-трубочек. Поскольку эта мембрана сближена с мембранами саркоплазматической сети, состояние последних меняется, кальций освобождается из цистерн сети и взаимодействует с актино-миозиновыми комплексами (они сокращаются). Когда потенциал действия исчезает, кальций снова аккумулируется в канальцах сети и сокращение миофибрилл прекращается. Для развития усилия сокращения нужна энергия. Она освобождается за счет превращения АТФ в АДФ. Роль АТФ-азы выполняет миозин. Источником АТФ служат главным образом митохондрии, поэтому они и располагаются непосредственно между миофибриллами.

Большую роль в деятельности миосимпластов играют включения миоглобина и гликогена. Гликоген служит источником энергии, необходимой не только для совершения мышечной работы, но и поддержания теплового баланса всего организма. Миоглобин связывает кислород, когда мышца расслаблена и через мелкие кровеносные сосуды свободно протекает кровь. Во время сокращения мышцы сосуды сдавливаются, а запасенный кислород освобождается и участвует в биохимических реакциях.

Миосателлитоциты. Эти малодифференцированные клетки являются источником регенерации мышечной ткани. Они прилежат к поверхности миосимпласта, так что их плазмолеммы соприкасаются (см. рис. 9.1, 9.4). Миосателлитоциты одноядерны, их темные ядра овальной формы и мельче, чем в симпластах. Они обладают всеми органеллами общего значения (в том числе и клеточным центром).

Типы мышечных волокон. Разные мышцы (как органы) функционируют в неодинаковых биомеханических условиях. Поэтому и мышечные волокна в составе разных мышц обладают разной силой, скоростью и длительностью сокращения, а также утомляемостью. Активность ферментов в них различна, и представлены они в различных изомерных формах. Различно в них и содержание дыхательных ферментов - гликолитических и окислительных.

Рис. 9.7. Активность сукцинатдегидрогеназы в мышечных волокнах разного типа (препарат В. Ф. Четвергова, обработка по Нахласу и соавт.): 1 - высокая; 2 - низкая; 3 - средняя

По соотношению миофибрилл, митохондрий и миоглобина различают белые, красные и промежуточные волокна. По функциональным особенностям мышечные волокна подразделяют на быстрые, медленные и промежуточные, что определяется молекулярной организацией миозина. Среди его изоформ существуют две основные - «быстрая» и «медленная». При постановке гистохимических реакций их идентифицируют по АТФ-азной активности. С этими свойствами коррелирует и активность дыхательных ферментов. Обычно в быстрых волокнах преобладают гликолитические процессы, они богаты гликогеном, в них меньше миоглобина, поэтому их называют белыми. В медленных волокнах, напротив, выше активность окислительных ферментов, они богаче миоглобином, выглядят более красными.

Наряду с белыми и красными существуют и промежуточные волокна. В составе большинства скелетных мышц волокна разного гистохимического типа располагаются мозаично (рис. 9.7).

Свойства мышечных волокон меняются при изменении нагрузок - спортивных, профессиональных, а также в экстремальных условиях (невесомость). При возврате к обычной деятельности такие изменения обратимы. При некоторых заболеваниях (мышечные атрофии, дистрофии, последствия денервации) мышечные волокна с разными исходными свойствами изменяются неодинаково. Это позволяет уточнять диагноз, для чего исследуют биоптаты скелетных мышц.

Регенерация. Ядра миосимпластов делиться не могут, так как в саркоплазме отсутствуют клеточные центры. Камбиальными элементами служат миосателлитоциты. Пока организм растет, они делятся, а дочерние клетки сливаются с миосимпластами. По окончании роста размножение миосателлитоцитов затухает. После повреждения мышечного волокна на некотором протяжении от места травмы оно разрушается и его фрагмен-

ты фагоцитируются макрофагами. Восстановление тканей осуществляется за счет двух механизмов: компенсаторной гипертрофии самого симпласта и пролиферации миосателлитоцитов. В симпласте активизируются гранулярная эндоплазматическая сеть и комплекс Гольджи. Происходит синтез веществ, необходимых для восстановления саркоплазмы и миофибрилл, а также сборка мембран, так что восстанавливается целостность плазмо-леммы. Поврежденный конец миосимпласта при этом утолщается, образуя мышечную почку. Миосателлитоциты, сохранившиеся рядом с повреждением, делятся. Одни из них мигрируют к мышечной почке и встраиваются в нее, другие сливаются (так же, как миобласты при гистогенезе) и образуют новые миотубы, которые развиваются в мышечных волокна.

9.2.2. Скелетная мышца как орган

Передача усилий сокращения на скелет осуществляется посредством сухожилий или прикрепления мышц непосредственно к надкостнице. На конце каждого мышечного волокна плазмолемма образует глубокие узкие впячивания. В них со стороны сухожилия или надкостницы проникают тонкие коллагеновые волокна. Последние спирально оплетаются ретикулярными волокнами. Концы волокон направляются к базальной мембране, входят в нее, поворачивают назад и по выходе снова оплетают коллагеновые волокна соединительной ткани.

Между мышечными волокнами находятся тонкие прослойки рыхлой волокнистой соединительной ткани - эндомизий. Коллагеновые волокна наружного листка базальной мембраны вплетаются в него (см. рис. 9.3, в), что способствует объединению усилий при сокращении миосимпластов. Более толстые прослойки рыхлой соединительной ткани окружают по несколько мышечных волокон, образуя перимизий и разделяя мышцу на пучки. Несколько пучков объединяются в более крупные группы, разделенные более толстыми соединительнотканными прослойками. Соединительную ткань, окружающую поверхность мышцы, называют эпимизием.

Васкуляризация. Артерии вступают в мышцу и распространяются по прослойкам соединительной ткани, постепенно истончаясь. Ветви пятого-шестого порядка образуют в перимизии артериолы. В эндомизии расположены капилляры. Они идут вдоль мышечных волокон, анастомозируя друг с другом. Венулы, вены и лимфатические сосуды проходят рядом с приносящими сосудами. Как обычно, рядом с сосудами много тучных клеток, принимающих участие в регуляции проницаемости сосудистой стенки.

Иннервация. В мышцах выявлены миелинизированные эфферентные (двигательные), афферентные (чувствительные), а также немиелинизиро-ванные вегетативные нервные волокна. Отросток нервной клетки, приносящий импульс от мотонейрона спинного мозга, ветвится в перимизии. Каждая его ветвь проникает сквозь базальную мембрану и у поверхности симпласта на плазмолемме образует терминали, участвуя в организации так называемой моторной бляшки (см. главу 10, рис. 10.18). При поступлении

Рис. 9.8. Фрагмент мышечного веретена, содержащего мышечные волокна с ядерной цепочкой (а) и с ядерной сумкой (б) (схема по Г. С. Катинасу): 1 - ядра; 2 - миофибриллы (органеллы общего значения не показаны)

нервного импульса из терминалей выделяется ацетилхолин - медиатор, который вызывает возбуждение (потенциал действия), распространяющееся отсюда по плазмолемме миосимпласта.

Итак, каждое мышечное волокно иннервируется самостоятельно и окружено сетью гемокапилляров, образуя комплекс, именуемый мионом.

Группа мышечных волокон, ин-нервируемых одним мотонейроном, называется нервно-мышечной единицей. Мышечные волокна, принадлежащие к одной нервно-мышечной единице, лежат не рядом, а расположены мозаично среди волокон, относящихся к другим единицам.

Чувствительные нервные окончания располагаются не на рабочих (экстрафузальных) мышечных волокнах, а связаны со специализированными мышечными волокнами в так называемых мышечных вере-

тенах (с интрафузальными мышечными волокнами), которые расположены в перимизии.

Интрафузальные мышечные волокна. Интрафузальные мышечные волокна веретен значительно тоньше рабочих. Существует два их вида - волокна с ядерной сумкой и волокна с ядерной цепочкой (рис. 9.8). Ядра в тех и в других округлые и расположены в толще симпласта, а не у его поверхности. В волокнах с ядерной сумкой ядра симпласта образуют скопления в его утолщенной средней части. В волокнах с ядерной цепочкой в средней части симпласта утолщение не образуется, ядра лежат здесь продольно одно за другим. Рядом со скоплениями ядер расположены органеллы общего значения.

Миофибриллы находятся в концах симпластов. Сарколемма волокна соединяется с капсулой нервно-мышечного веретена, состоящей из плотной волокнистой соединительной ткани. Каждое мышечное волокно веретена спирально обвито терминалью чувствительного нервного волокна. В результате сокращения или расслабления рабочих мышечных волокон изменяется натяжение соединительнотканной капсулы веретена, соответственно изменяется тонус интрафузальных мышечных волокон. Вследствие этого возбуждаются чувствительные нервные окончания, обвивающие их, и в области терминалей возникают афферентные нервные импульсы. На каждом миосимпласте располагается также своя моторная бляшка. Именно поэтому интрафузальные мышечные волокна постоянно находятся в напряжении, подстраиваясь к длине мышечного брюшка в целом.

9.2.3. Сердечная мышечная ткань

Гистогенез и виды клеток. Источники развития сердечной поперечнополосатой мышечной ткани (textus muscularis striatus cardiacus) - симметричные участки висцерального листка спланхнотома в шейной части зародыша - миоэпикардиальные пластинки. Из них дифференцируются также клетки мезо-телия эпикарда. Исходные клетки сердечной мышечной ткани - кардиомио-бласты - характеризуются рядом признаков: клетки уплощены, содержат крупное ядро, светлую цитоплазму, бедную рибосомами и митохондриями. В дальнейшем происходит развитие комплекса Гольджи, гранулярной эндо-плазматической сети. В кардиомиобластах обнаруживаются фибриллярные структуры, но миофибрилл нет. Клетки обладают высоким пролифератив-ным потенциалом.

После ряда митотических циклов кардиомиобласты дифференцируются в кардиомиоциты, в которых начинается саркомерогенез (рис. 9.9). В цитоплазме кардиомиоцитов увеличивается число полисом, канальцев гранулярной эндоплазматической сети, накапливаются гранулы гликогена, возрастает объем актомиозинового комплекса. Кардиомиоциты сокращаются, но не теряют способность к дальнейшей пролиферации и дифференцировке. Развитие сократительного аппарата в позднем эмбриональном и постна-тальном периодах происходит путем надставки новых саркомеров и наслоения вновь синтезированных миофиламентов.

Дифференцировка кардиомиоцитов сопровождается увеличением числа митохондрий, распределением их у полюсов ядер и между миофи-бриллами и протекает параллельно со специализацией контактирующих поверхностей клеток. Кардиомиоциты путем контактов «конец в конец», «конец в бок» формируют сердечные мышечные волокна, и в целом ткань представляет собой сетевидную структуру. Часть кардиомиоцитов на ранних этапах кардиомиогенеза являются сократительно-секреторными. В дальнейшем в результате дивергентной дифференцировки возникают «темные» (сократительные) и «светлые» (проводящие) миоциты, в которых исчезают секреторные гранулы, тогда как в предсердных мио-цитах они сохраняются. Так формируется дифферон эндокринных кардиомиоцитов. Эти клетки содержат центрально расположенное ядро с диспергированным хроматином, одним-двумя ядрышками. В цитоплазме хорошо развиты гранулярная эндоплазматическая сеть, диктиосомы комплекса Гольджи, в тесной связи с элементами которого находятся многочисленные секреторные гранулы диаметром около 2 мкм, содержащие электронно-плотный материал. В дальнейшем секреторные гранулы обнаруживаются под сарколеммой и выделяются в межклеточное пространство путем экзоцитоза.

В целом в ходе гистогенеза возникает пять видов кардиомиоцитов - рабочие (сократительные), синусные (пейсмекерные), переходные, проводящие, а также секреторные. Рабочие (сократительные) кардиомиоциты образуют свои цепочки (рис. 9.10). Именно они, укорачиваясь, обеспечивают силу сокращения всей сердечной мышцы. Рабочие кардиомиоциты способны

Рис. 9.9. Гистогенез сердечной мышечной ткани (схема по П. П. Румянцеву): а - кардиомиоциты в стенке сердечной трубки; б - кардиомиоциты в позднем эмбриогенезе; в - кардиомиоциты в постанатальном периоде. 1 - кардиомиоцит; 2 - митотически делящийся кардиомиоцит; 3 - миофиламенты и миофибриллы

передавать управляющие сигналы друг другу. Синусные (пейсмекерные) кардиомиоциты способны автоматически в определенном ритме сменять состояние сокращения на состояние расслабления. Клетки воспринимают управляющие сигналы от нервных волокон, в ответ на что изменяют ритм сократительной деятельности. Синусные (пейсмекерные) кардиомиоциты передают управляющие сигналы переходным кардиомиоцитам, а последние - проводящим и рабочим кардиомиоцитам. Проводящие кардиомиоциты образуют цепочки клеток, соединенных своими концами, и располагаются под эндо-

Рис. 9.10. Строение сердечной мышечной ткани (микрофотография). Окраска - железный гематоксилин:

1 - ядро кардиомиоцита; 2 - цепочка кардиомиоцитов; 3 - вставочные диски

кардом. Первая клетка в цепочке воспринимает управляющие сигналы от синусных кардиомиоцитов и передает их далее - другим проводящим кар-диомиоцитам. Клетки, замыкающие цепочку, передают сигнал через переходные кардиомиоциты рабочим. Секреторные кардиомиоциты выполняют особую функцию. Они вырабатывают пептидный гормон кардиодилатин, который циркулирует в крови в виде кардионатрина, вызывает сокращение гладких миоцитов артериол, увеличение почечного кровотока, ускоряет клубочковую фильтрацию и выделение натрия. Все кардиомиоциты покрыты базальной мембраной.

Строение сократительных (рабочих) кардиомиоцитов. Клетки имеют удлиненную (100-150 мкм) форму, близкую к цилиндрической. Их концы соединяются друг с другом, так что цепочки клеток составляют так называемые функциональные волокна (толщиной до 20 мкм). В области контактов клеток образуются так называемые вставочные диски (рис. 9.10). Кардиомиоциты могут ветвиться и образуют пространственную сеть. Их поверхности покрыты базальной мембраной, в которую снаружи вплетаются ретикулярные и коллагеновые волокна. Ядро кардиомиоцита (иногда их два) овальное и лежит в центральной части клетки. У полюсов ядра сосредоточены немногочисленные органеллы общего значения, за исключением агранулярной эндоплазматической сети и митохондрий.

Специальные органеллы, которые обеспечивают сокращение, называются миофибриллами. Они слабо обособлены друг от друга, могут расщепляться. Их строение аналогично строению миофибрилл миосимпласта скелетного мышечного волокна. Каждая митохондрия располагается на протяжении всего саркомера. От поверхности плазмолеммы в глубь кардиомиоцита направлены Т-трубочки, находящиеся на уровне Z-линии. Их мембраны сближены,

контактируют с мембранами гладкой эндоплазматической (саркоплазмати-ческой) сети. Петли последней вытянуты вдоль поверхности миофибрилл и имеют латеральные расширения (L-системы), формирующие вместе с Т-трубочками триады или диады (рис. 9.11, а). В цитоплазме имеются включения гликогена и липидов, особенно много включений миоглобина. Механизм сокращения кардиомиоцитов такой же, как у миосимпласта.

Организация кардиомиоцитов в ткань. Кардиомиоциты соединяются друг с другом по типу «конец в конец». Здесь образуются вставочные диски: эти участки выглядят как тонкие пластинки при среднем увеличении светового микроскопа. Фактически же концы кардиомиоцитов имеют неровную поверхность, поэтому выступы одной клетки входят во впадины другой. Поперечные участки выступов соседних клеток соединены друг с другом интердигитациями и десмо-сомами (рис. 9.11, б).

Рис. 9.11. Строение кардиомиоцита: а - схема (по Ю. И. Афанасьеву и В. Л. Горячкиной); б - электронная микрофотография вставочного диска. Увеличение 20 000. 1 - миофибриллы; 2 - митохондрии; 3 - саркотубулярная сеть; 4 - Т-трубочки; 5 - базальная мембрана; 6 - лизосома; 7 - вставочный диск; 8 - десмосома; 9 - зона прикрепления миофибрилл; 10 - щелевые контакты; 11 - гликоген

К каждой десмосоме со стороны цитоплазмы подходит миофибрил-ла, закрепляющаяся концом в десмо-плакиновом комплексе. Таким образом, при сокращении тяга одного кардиомиоцита передается другому. Боковые поверхности выступов кардиомиоцитов объединяются нексусами (щелевыми соединениями). Это создает между ними метаболические связи и обеспечивает синхронность сокращений.

Регенерация. В гистогенезе сердечной мышечной ткани камбий не возникает. Поэтому регенерация ткани протекает на основе внутриклеточных гиперпластических процессов. Вместе с тем для кардиомиоцитов млекопитающих, приматов и человека характерен процесс полиплоиди-

зации. Например, у обезьян ядра до 50 % терминально дифференцированных кардиомиоцитов становятся тетра- и октоплоидными. Полиплоидные кардиомиоциты возникают за счет ацитокинетического митоза, что приводит к многоядерности. В условиях патологии сердечно-сосудистой системы человека (ревматизм, врожденные пороки сердца, инфаркт миокарда и др.) важную роль в компенсации повреждений кардиомиоцитов играют внутриклеточная регенерация, полиплоидизация ядер, возникновение многоядерных кардиомиоцитов.

9.3. ГЛАДКИЕ МЫШЕЧНЫЕ ТКАНИ

Различают три группы гладких (неисчерченных) мышечных тканей (textus muscularis nonstriatus) и клеток: мезенхимные, нейральные и миоэпи-телиальные клетки.

9.3.1. Мышечная ткань мезенхимного происхождения

Гистогенез. Эта ткань делится на два вида: висцеральную и сосудистую. В эмбриональном гистогенезе даже электронно-микроскопически трудно отличить мезенхимные предшественники фибробластов от гладких миоци-тов. В малодифференцированных гладких миоцитах развиты гранулярная эндоплазматическая сеть, комплекс Гольджи. Тонкие филаменты ориентированы вдоль длинной оси клетки. По мере развития размеры клетки и число филаментов в цитоплазме возрастают. Постепенно объем цитоплазмы, занятый сократительными филаментами, увеличивается, расположение их в цитоплазме становится все более упорядоченным. Пролиферативная активность гладких миоцитов в миогенезе постепенно снижается. Это происходит в результате увеличения продолжительности клеточного цикла, выхода клеток из цикла репродукции и перехода в дифференцированное состояние. Дифференцируясь, они синтезируют компоненты межклеточного матрикса, коллаген базальной мембраны, а также эластин. У дефинитивных клеток (миоцитов) синтетическая способность снижена, но не исчезает полностью.

Строение и функционирование клеток. Гладкий миоцит - веретеновидная клетка длиной 20-500 мкм, шириной 5-8 мкм. Ядро палочковидное, находится в ее центральной части. Когда миоцит сокращается, его ядро изгибается и даже закручивается (рис. 9.12-9.14).

Структура дефинитивных гладких миоцитов (лейомиоцитов), входящих в состав внутренних органов и стенки сосудов, имеет много общего, но в то же время характеризуется гетероморфией. Так, в стенках вен и артерии обнаруживаются овоидные, веретеновидные, отростчатые миоциты длиной 10-40 мкм, доходящие иногда до 140 мкм. Наибольшей длины гладкие мио-

циты достигают в стенке матки - до 500 мкм. Диаметр миоцитов колеблется от 2 до 20 мкм. В зависимости от характера внутриклеточных биосинтетических процессов различают контрактильные и секреторные миоциты. Первые специализированы на функции сокращения, но вместе с тем сохраняют секреторную активность.

Секреторные миоциты по своей ультраструктуре напоминают фиб-робласты, однако содержат в своей цитоплазме пучки тонких миофи-ламентов, расположенные на периферии клетки. В цитоплазме хорошо развиты комплекс Гольджи, гранулярная эндоплазматическая сеть, много митохондрий, гранул гликогена, свободных рибосом и полисом. По степени зрелости такие клетки относят к малодифференцирован-ным. Филаменты актина образуют в цитоплазме трехмерную сеть, вытянутую преимущественно продольно. Концы филаментов скреплены между собой и с плазмолеммой специальными сшивающими белками. Эти участки хорошо видны на электронных микрофотографиях как плотные тельца. Мономеры миозина располагаются рядом с филаментами актина. Плазмолемма образует впя-чивания - кавеолы, в которых концентрируются ионы кальция. Сигнал к сокращению обычно поступает по нервным волокнам. Медиатор, который выделяется из их термина-лей, изменяет проницаемость плаз-молеммы. Происходит высвобождение ионов кальция, что влечет за собой как полимеризацию миозина, так и взаимодействие миозина с актином.

Происходит втягивание актино-вых миофиламентов между миози-

Рис. 9.12. Строение гладкого миоцита (схема):

а, в - при расслаблении; б, д - при наибольшем сокращении; г - при неполном сокращении; в-д - увеличенные изображения участков, обведенных рамками на фрагментах а и б. 1 - плазмолемма; 2 - плотные тельца; 3 - ядро; 4 - эндоплазма; 5 - сократительные комплексы; 6 - митохондрии; 7 - базальная мембрана; 8 - актиновые (тонкие) мио-филаменты; 9 - миозиновые (толстые) миофиламенты

Рис. 9.13. Ультраструктура дифференцирующегося гладкого миоцита в стенке бронха:

1 - ядро; 2 - цитоплазма с миофиламентами; 3 - комплекс Гольджи, увеличение 35 000 (препарат А. Л. Зашихина)

новыми, плотные пятна сближаются, усилие передается на плазмолемму, и вся клетка укорачивается (см. рис. 9.12). Когда поступление сигналов со стороны нервной системы прекращается, ионы кальция перемещаются из цитоплазмы в кавеолы и в канальцы эндоплазматической сети, миозин деполимеризуется и «миофибриллы» распадаются. Сокращение прекращается. Таким образом, актиномиозиновые комплексы существуют в гладких миоцитах только в период сокращения при наличии в цитоплазме свободных ионов кальция.

Миоциты окружены базальной мембраной. На отдельных участках в ней образуются «окна», поэтому плазмолеммы соседних миоцитов сближаются. Здесь формируются нексусы, и между клетками возникают не только механические, но и метаболические связи. Поверх «чехликов» из базальной мембраны между миоцитами проходят эластические и ретикулярные волокна, объединяющие клетки в единый тканевой комплекс. Гладкие миоциты синтезируют протеогликаны, гликопротеиды, проколлаген, проэластин, из которых формируются коллагеновые и эластические волокна и аморфный компонент межклеточного матрикса. Взаимодействие миоцитов осуществляется при помощи цитоплазматических мостиков, взаимных впячиваний, нексусов, десмосом, участков мембранных контактов поверхностей миоцитов.

Регенерация. Гладкая мышечная ткань висцерального и сосудистого видов обладает значительной чувствительностью к воздействию экстремальных факторов. В активированных миоцитах возрастает уровень биосинтетических процессов, морфологическим выражением которых являются синтез сократительных белков, укрупнение и гиперхроматоз ядра, гипертрофия ядрышка, возрастание показателей ядерно-цитоплазматического отношения, увеличение количества свободных рибосом и полисом, актива-

Рис. 9.14. Строение гладкой мышечной ткани (объемная схема) (по Р. В. Крстичу, с изменениями):

1 - веретеновидные гладкие миоциты; 2 - цитоплазма миоцита; 3 - ядра миоци-тов; 4 - плазмолемма; 5 - базальная мембрана; 6 - поверхностные пиноцитозные пузырьки; 7 - межклеточные соединения; 8 - нервное окончание; 9 - коллагеновые фибриллы; 10 - микрофиламенты

ция ферментов, аэробного и анаэробного фосфорилирования, мембранного транспорта. Клеточная регенерация осуществляется как за счет дифференцированных клеток, обладающих способностью вступать в митотический цикл, так и за счет активизации камбиальных элементов (миоцитов малого объема). При действии ряда повреждающих факторов отмечается феноти-пическая трансформация контрактильных миоцитов в секреторные. Данная трансформация часто наблюдается при повреждении интимы сосудов, формировании интимальной гиперплазии при развитии атеросклероза.

Рис. 9.15. Ультраструктура миопигментоцита (препарат Н. Н. Сарбаевой): 1 - ядро; 2 - миофиламенты, увеличение 6000

9.3.2. Мышечная ткань мезенхимного типа в составе органов

Миоциты объединяются в пучки, между которыми располагаются тонкие прослойки соединительной ткани. В эти прослойки вплетаются ретикулярные и эластические волокна, окружающие миоциты. В прослойках проходят кровеносные сосуды и нервные волокна. Терминали последних оканчиваются не непосредственно на миоцитах, а между ними. Поэтому после поступления нервного импульса медиатор распространяется диффуз-но, возбуждая сразу многие клетки. Гладкая мышечная ткань мезенхимно-го происхождения представлена главным образом в стенках кровеносных сосудов и многих полых внутренних органов.

Гладкая мышечная ткань в составе конкретных органов имеет неодинаковые функциональные свойства. Это обусловлено тем, что на поверхности органов имеются разные рецепторы конкретных биологически активных веществ. Поэтому и на многие лекарственные препараты их реакция неодинакова. Возможно, разные функциональные свойства тканей связаны и с конкретной молекулярной организацией актиновых филаментов.

9.3.3. Мышечная ткань нейрального происхождения

Мышечная ткань радужки и цилиарного тела относится к четвертому типу сократимых тканей. Миоциты этой ткани развиваются из клеток нейрального зачатка в составе внутренней стенки глазного бокала. В ряду

Рис. 9.16. Миоэпителиальные клетки в концевом отделе слюнной железы (схема по Г. С. Катинасу):

а - поперечный срез; б - вид с поверхности. 1 - ядра миоэпителиоцитов; 2 - отростки миоэпителиоцитов; 3 - ядра секреторных эпителиоцитов; 4 - базальная мембрана

позвоночных мышечные элементы радужки обнаруживают разнообразную дивергентную дифференцировку. Так, мионейральная ткань у рептилий и птиц представлена исчерченными многоядерными волокнами, имеющими большое сходство с мускулатурой скелетного типа. У млекопитающих и человека основной структурно-функциональной единицей мышц радужки является гладкий одноядерный миоцит, или миопигментоцит. Последние имеют пигментированное тело, содержащее одно ядро, вынесенное за пределы веретеновидной сократимой части (рис. 9.15).

Цитоплазма клеток содержит большое число митохондрий и пигментные гранулы, которые сходны по размерам и форме с гранулами пигментного эпителия. Миофиламенты в миопигментоцитах делятся на тонкие (7 нм) и толстые (1,5 нм), по размерам и расположению напоминают миофиламен-ты гладких миоцитов. Каждый миопигментоцит окружен базальной мембраной. Возле цитоплазматических отростков миоцитов обнаруживаются безмиелиновые нервные волокна. В зависимости от направления отростков (перпендикулярно или параллельно краю зрачка) миоциты образуют две мышцы - суживающую и расширяющую зрачок.

Регенерация. В немногочисленных работах показана низкая регенераци-онная активность после повреждения или ее отсутствие.

9.3.4. Мышечные клетки эпидермального происхождения

Миоэпителиальные клетки развиваются из эпидермального зачатка. Они встречаются в потовых, молочных, слюнных и слезных железах и имеют общих предшественников с их секреторными клетками. Миоэпителиальные

клетки непосредственно прилежат к собственно эпителиальным и имеют общую с ними базальную мембрану. При регенерации те и другие клетки восстанавливаются тоже из общих малодифференцированных предшественников. Большинство миоэпителиальных клеток имеют звездчатую форму. Эти клетки нередко называют корзинчатыми: их отростки охватывают концевые отделы и мелкие протоки желез (рис. 9.16). В теле клетки располагаются ядро и органеллы общего значения, а в отростках - сократительный аппарат, организованный как и в клетках мышечной ткани мезенхимного типа.

Контрольные вопросы

1. Генетическая классификация мышечных тканей. Структурно-функциональные единицы разных типов мышечной ткани.

2. Поперечнополосатая скелетная мышечная ткань: развитие, строение, морфологические основы мышечного сокращения. Регенерация.

3. Поперечнополосатая сердечная мышечная ткань: развитие, специфика строения различных видов кардиомиоцитов, регенерация.

4. Разновидности гладких миоцитов: источники развития, топография в организме, регенерация.

Гистология, эмбриология, цитология: учебник / Ю. И. Афанасьев, Н. А. Юрина, Е. Ф. Котовский и др.. - 6-е изд., перераб. и доп. - 2012. - 800 с. : ил.

Скелетная мышечная ткань.

Имеет неклеточное строение. Представлена клетточным производным - миосимпластом или мышечным волоком. Это ограничено плазмолемой очень длинный плазматический тяж, содержащий большое количество ядер. Образуется при слиянии эмбрионных одноядерных клеток после того, как они достигли определенной степени дифференцировки. Эти клетки - *миобласты* сливаются друг с другом, образуя тонкие мышечные трубочки. С этого момента их ядра делиться тогут. Начинается быстрый синтез сократительных волокон и их построение.

Многим структурным клеткам при навании дают приставку Сарко. Мяж покрыт плазмолеммой и сверху еще базальной мембраной, которая построена из фибрилл и аторфного вещества, Сарколемма состоит из плазмолеммы и базальной мембраны. Между базальной мембраной и плазмолемой кое-где одноядерные клетки - миосателлиты. Это камбиальные кл., кот. В отличие от ядер симпласта могут делиться, образуя единственный источник пополнения ядер в симпласте.

М.о. мышечное волокно - это клеточно - симпластический комплекс (симпласт + сателлит). Являются структурной и функциональной единицей скелетной мышечной ткани.

Длина волонка может достигать нескольких десятков сантиметров. Наружная мембрана содержит волокна, тестно спаеные эндомизием. Это рыхлые прослойки соединительной ткани, которые окружают каждое волокно. Эндомизий регулирует питание, обмен и фунционирование волокна. Выделяют еще перимизий - одевает пучок волокон. Сверху мышца заключена в эпимизий, который соответствует фасции мышцы.

В переднем отделе мышечного тракта мышечная ткань не переходит на органный уровень (нет эпимизия).

Кроме трофической функции обеспечивается фиксация мышечной ткани к сухожилию или хрящу. Ядра оттеснены на переферию, т.к. вся масса клеток буквально забита миофибриллами, они ориетированы продольно продольная исчерченность. Поперечная исчерченность чередование темных и светлых полосок, которые видны только в расслабленом состоянии образует поперечную исчерченность мышечной ткани.

ПРИРОДА ПОПЕРЕЧНОЙ ИСЧЕРЧЕННОСТИИ

Каждая миофибрилла имеет много миофиламентов. Тонкие нити - актиновые филаменты из глобулярного белка актина. Имеют также регуляторные белки тропамин и пропамиазин между ними. Толстые миофиламенты - миозиновые - фибрилярный белок. Имеет фибрилярный хвостик, стержень, на одном конце имеет головку, которая может изменять угол наклона. По этой окружности всегда распологаются выступающие 6 головок (распологающиеся паралельно друг другу, головки выступают). Актиновые и миозиновые нити располагаются строго друг над другом. Нити прошнурованы специальным белком, который выполняет структурную функцию. Прошнурованные места рассматриваются на светооптическом уровне.

Актиновые нити соединены по Z лини или телофрагмы, миозиновые - по M линии мезофрагмы.

Участок, в состав которого только входят актиновые нити составляет простое лучепреломление, образуя I - диск (изотропное лучепреломление). Между ними находится А - диски (анихотропное)- обладает 2-ым лучепреломлением. Н-диск посредине М. Расстояние между 2-мя Z-линиями называется саркомером.

При сокращении мышечного волокна уменьшается граница каждого саркомера. В основе сокращения - механихм скольжения нитей друг относительно друга. Хадвигание миофибрилл друг за друга происходит за счет движений веслообразных головок миозина. Если волоко расслаблено, скольжение не происходит, т.к. регулирующий белок не позволяют прикоснуться к актиновым нитям.

Для сокращения нужно снять блок; 2 условия:

1) высокая концентация ионов Ca в окружающей гиалоплазме. ионы Ca еще и стимулируют АТФ- активность обесечивая для головок энергией.

2) Специфичный мембрранный аппарат волокна, который включает в себя Т-систему и саркоплазматическую сеть.

Т-система - это производное наружной мембраны, т.е. плазмолеммы. От плазмолеммы с очень постоянным интервалами вглубь волокна отходят трубчатые каналы, располагающиеся паралельно пронизывающего его волокна поперек. Когда такая трубочка натыкается на миофибриллу - она раздваивается, образуя колечка и т.д. Это колечко приходится на определенное пространство (место контакта актин и миозизовых нитей). Т-система обеспечивает мнговенное и одновременное проведение возбуждения от плазмолемы к каждому саркомеру. Изначально возбуждение идет от нервной клетки. Аксон разветвляется на поверхности мембраны мышечного волокна образуя медиатор, связ. с рецепторами плазмолеммы.

Саркоплазматическая сеть - гладкая ЭПС. В мышечных клетках депо кальция. Ca2+ спрятан, нужен его выброс.

Каждая миофибрилла снаружи упакована сокоплазматической сетью.

В каждой триаде Т-трубочек очень близко подходит к мышечной саркоплазматической сети. Нервные импульсы меняют состояние саркоплазматической мембраны.Дальше в ней открываются мембранные кольцевые каналы, далее Са2+ выходит наружу из гладкой ЭПС.

При прекращении нервного импульса Са2+ перекакачивается обратно в терминальные цистерны, в итоге мышца расслабляется.

По характеру сокращение сердечной мышечной ткани является тетанической (быстро сокращается и расслабляется).

ТРОФИЧЕСКИЙ АППАРАТ МЫШЕЧНОГО ВОЛОКНА.

Многочисленные ядра, которые которые обеспечивают постоянный синтез сократительных белков.

Свободные рибосомы, много митохондрий - длинными рядами между миофибрилл (обычно вытянутой формы). Характерно наличие включений: гликоген миоглобин. Миоглобин- пигментное включение имеет красный цвет.

СНАБЖЕНИЕ МЫШЦ КИСЛОРОДОМ,

Гликоген материал для получения АТФ по гликолитическому пути.

В момент сокращения снабжается кислородом прекращается. Запас кислорода надолго не хватает. Толстые волокна - белые(использование АТФ синтезв анаэробных условиях), но они не способны к длительной работе.Их противоположность- красные волокна(тонкие), многт миоглобина. Долго и интенсивно работают.

Мышечные волокна состоят из миофибрилл, а миофибриллы из саркамеров - поперечно- мышечной ткани- структурной единицей.

Структурная единица сердечной мышцы - кардиомиоциты, которые связаны друг с другом межклеточными контактами следовательно бысторе со\кращение.

Область соединения кардиомиоцитов- вставочные диски.

ПРОВОДЯЩАЯ СИСТЕМА СЕРДЦА.

Водители ритма- сами без внешних импульсов с определенной частотой сокращаются. Возбуждение мембраны передается по всей проводящей системе.

ВОДИТЕЛИ РИТМА 1-го ПОРЯДКА- синусно-предсердечный узел- производное клеток синусных кардиомиоцитов.Это небольшие небольшие клетки- мало миофибрилл, главное отличие- непостоянный потенциал покоя, т.е. у них все время через мембрану идет медленное протекание ионов следовательно возбуждение где-то 70 уд.мин.

Проводящая система- быстрая передача имп. до рабочих кардиомиоцитов.

ВОДИТЕЛИ РИТМА 2-го ПОРЯДКА- атриовентрикулярный узел скорость примерно 30-40 сокращ. в мин.(недостаточно для нормальной жизнедеятельности) Подчиняется 1-му водителю ритма.

ВОДИТЕЛИ РИТМА 3-го ПОРЯДКА- пучок Гисса - еще более низкая частота регуляции сердечного ритма.

Промежуточные кардиомиоциты очень большие (волокна Пуркинье). Задача - как можно большему скор. кл. передать возбуждение.

Помимо автоматики сердечные сокращения - нервная регуляция (блуждающий нерв); симпатические и парасимпатические волокна (ускоряют и урежают скорость сокращений. Сужествует ряд гумар-ых факторов.

Так секреторные кардиомиоциты в области ушек сердца выделяют биологически активные вещества(натриоуретический фактор), которые направлены на регуляцию водного и натриевого обменна следовательно влияние на кровяное давление.

ОБЩИЕ ПРИНЦИПЫ ОРГАНИЗАЦИИ НЕЙРАЛЬНЫХ ТКАНЕЙ И НЕРВНОЙ СИСТЕМЫ.

Нервная ткань состоит в основном из клеток, межклеточного вещества мало.

КЛАССИФИКАЦИЯ НЕРВНЫХ КЛЕТОК.

1. Нервные клетки, или нейроны, которые обеспечивают специфические функции- проведение и передача возбуждения.

2. Клетки нейролгии или гинальные клетки, вспомогательные (трофическая функция).

За небольшим исключением образовываются из нервной трубки.Клетки нервной трубки - мдунобласты- которые на ранних этапах эмбриогинеза диф. на 2 направления:

Нейробласты следовательно нейроны

Спонгиобласты следовательно нейрогии

Нейроны - их главная функция- проведение или передача возбуждения.

Строение - Клетки разных размеров, которые имеют тело называются перикарион, центрально расположены, крупное ядро, и большее или меньшее отростков.

Отростки делятся на 2 типа:

Аксон(нейрит(- всегда 1. От тела к окончанию аксона возбуждение

Дентриты- возбуждение к телу нервных клеток, различное

Если все органеллы общего назначения, даже клеточный центр и специф. структура- базофильное в-во - это гранулы или мелкие зерна, расположенные в цитоплазме вокруг ядра. Это скопление гранулярной ЭПС (для выработки индиатора сл-но скорости ЭПС.) Спецификой в разных типах нейронов называется также основное в-во или тигроид.

Органеллы специального назначения- нейрофибриллы - длинные нити из нейрофиламентов и микротрубочек.

Они построены из фибрилярных белков и расположены в аксонах н.кл.Обеспечивают быстрый перенос медиатора к окончанию длинного отростка аксона(быстрый ток аксоплазмы).

Для нейронов характерен особый вид межклеточных контактов- синапс- также обеспечивает проведение возбуждения в одну сторону.

Массовый выброс содержимого гранул экзоцитозом наружу сл-но медиатор в синаптической щели сл-но связан с рецепторами мембраны сл-но возбуждение мембраны дендрита.

2 сипонсов: химический, электрический

Медиаторы разных типов:

Ацетилхонин - самый распространенный проницаемость мембраны- возбуждающиймедиатор.

Постеин мембрана соединительный фермент ацетилхоминэстераза- расщепляет избыток ацетилхолина в син. щели.

Недостаток сл-но непрерывный импульс сл-но судороги.

Тормозные- изомасляная кислота- стабилизирует действие(каналы не открываютя).

Один нейрон сл-но различные медиаторы и есть рецепторы к различным медаторам.

Но иногда различие по медиаторам типы м. кл.

Холинэргические сл-но ацетилхолин

Адренэргические сл-но норадренолин

Морфологическая классификация. (гл.пр.- число отростков

1) Униполярные

2) Биполярные

3) Мультиполярные

Функциональная классификацияз(Зависит от строени м. окончаний кл)

1) Рецепторные нейроны

2) Эферентные

3) Ассоциативны

1) Рецепторные (аффферентные или чувствительные) им. специализир. дендрит окончание. Их дендрит специализир. для восприятия каких-то стимулов (внешних или внутренних).

В зависимости от воспринимаемого стимула:

Экстрорецепторы(воспринимают возбуждение из внешней среды)

Интрарецепторы (посылают информацию о состоянии внутренних органов)(из внутренней среды)

Проприорецепторы (от опорно- двигательног аппарата)

Механорецепторы

Барорецепторы,болевые, терморецепторы.

2)Эферентные (двигательные), специализированный аксон.Окончание аксона приходится на какой либо рабочий орган, который отвечает на возбуждение. В большинстве случаев мишень- мышечные клетки. Иногда некоторые акреторные клетки также являютя мишенью.

1-е наз.моторные окончания. В месте контакта мышечные волокна не содержат базальной мембраны- нейромышечный синапс.

3) Ассоциативные. Их нервные окончания наз.концевые аппараты кл. Образуют межнейральные синапсы.

Нейролгия. Это клетки нервной ткани, которые выполняют опорную, защитную, трофическую, секреторную и разграничительную функции. Клетки очень разнообразны.

Микролгия- макрофа нервной ткани. имеет моноцитарное происхождение. В норме ф - уничтожение устаревших нейронов.

Макролгия- разные клетки:

Эпендимоциты, клетки, выстилающие полость спинно- мозгового канала и желудочков головного мозга. Это пограничная ткань, образует однослойный эпителий.

Длинные отростки уходят в толщину мозга разграничивается и опорная ф-я, секреторная.

По происхождению из нейрального зачатка. Эпендима учавствует в образовании темато- нейкворного барьера между кр.и яйквором) Этот барьер обладает очень стремит. избирательностью.

Определенные в-ва пропускают только в одну сторону. При менингите антибиотик сл-но в ликвор.

Олипондроциты.шванновские клетки, образуют мелиновую оболочку нижних волокон. 1) леммоциты

2) собелиты 9 окруж. тело н.клеткуи - защитная и трофическая ф-ии

Астроциты- отросчатые клетки, похожи на нейроны. Заполняют пространство между нейронамит. Отростками и телом плотно охватывают капиляр сл-но и возле каждого сосудика- футляр. Др. отростки тянутся к нейронам. Путем трансцитоза передают питательные в-ва, т.о.учавствуют в трофике. Это тематоэнцефалический баорьер (кровь и н. тк).

Один из самых строгих барьеров. Большинство нейронов созревают после рождения сл-но медиаторы воспринимают иммунокомпетентными клетками как антигены. Чтобы уберечь нейроны от аутоимунного ответа, нейроны нигде не соприкасаются с кровью. В состоянии этого барьера входит:

1) эндотемий

Базальная мембрана капиляров

Астроцитарная (астроциты)

Иногда еще имеется иванновская клетка

3) - переваскулярной пограничной мембраны

Нервное волокно-это отросток нейрона связанный с клетками нейроглии. Сами отростки нейронов называются осевыми цилиндрами. Клетки которые покрыты аподедроциты называются еще леммациты. Лемоцит может контактировать с оевым цилиндром двумя разными способами сл-но миелиновые (мякатные) и безмиелиновые (без мякотные) мышечные волокна. Осевые цилиндры погружаются в леммоцит сдвоенные мембраны леммоцита на которые пдвешен осевой цилиндр мезаксон.

Миелиновое образование в том случае, если леммцит (шваннвоская клетка) многократно обкрутится вокруг осевого цилиндра. Цитоплазма на поверхности с ней v органелл. Много слоев плазм мембраны. При окраске серебром или осмием следовательно в черную окраску - это и называется миелином. Миелиновые валокна главным образом в соматическом отделе нервной системы; без миелиные для вегетативной нервной системы. Один лиммоцит может ослуживать одновременно несколько осевых цилиндров сл-но валокна кабельного типа. два вида рецепторов свбодные и несвободные.

НЕРВНАЯ СИСТЕМА.

Она объединяе механизм в единое целое и обеспечивает связь с внешней средой выполняет регуляторную функцию.

В основе синтетическая ней ронная теория:

1. Нервная система состоит из отдельных клеток нейронов сл-но стуктурная единица нервной системы нейрон.

2. Нейтоны между собой соединяются только специализированными контактами - синапсами.

3. Как фунциональная единица нейрон находится в состоянии либо возбуждения, либо покоя.

4. Есть два типа синапсов: возбуждающие и тормозные.

Основой деятельности морфологической нервной системы является рефлекторная дуга. Это цепочка нейронов, по которой импульс поступает от рецептора к исполнительному органу. рефлекторные дуги имеют разные особенности вы разных отделах нервной системы.

В сом. и вегетативных отделах рефлекторные дуги имеют свои особенности. Спинномозговые чувствительные нейроны.

Дендриты на пероферии нервных оканчаний. Аксоны заходят в ЦНС.

Дав типа нейронов мелкие темные и крупные свтлые. Чувствительный нейрон следует в спиной мозг следует передача возбуждения на мотонейрон (передни рога ядра) тело их ЦНС, а аксон следует к мышечной клетке формируя моторную бляшку.

Вегитативная нервная дуга устроена сложнее. Чувствительный отдел такойже. в вегитативных ядрах (боковые рога) спинного мозма происходит переключение на преганглионарный нейрон, его аксон тянется до вегитативного гангиля, где происходит переключение на постганглионарный нейрон, который зканчивается на рабочем органе.

Симпатическая (работа) и паросимпатическая (отдых) НС.

Преганглионарные - не длиные постганглионарные длинные симпатической НС. Интрамуральные или интраорганые ганглии- в стенке или около стенок нервного органа.

Отличаются тем, что в их состав входят три различные типа клеток - клетки Догеля:

1. Чувствительные нейроны

2. двигательные

3. ассоциативные

Преганглионарные длинные, постганглионарные короткие - парасимпатические.

Метасимпатическая нервная система условная автономность независимо от ЦНС. Узлы отличаются тем, чтомедиаторную роль могут выполнять различные биологически активные вещества.

Нервные ганглиевые узлы позваляют осуществлять работу рефлекторных дуг.

Внутренних органов, кожи, сосудов.

Скелетные мышцы совместно со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Кроме того, они выполняют защитную функцию, предохраняя внутренние органы от повреждений.

Скелетные мышцы являются активной частью опорно-двигательного аппарата, включающего также кости и их сочленения, связки, сухожилия. Масса мышц может достигать 50% общей массы тела.

С функциональной точки зрения к двигательному аппарату можно отнести и моторные нейроны, посылающие нервные импульсы к мышечным волокнам. Тела моторных нейронов, иннервирующих аксонами скелетную мускулатуру, располагаются в передних рогах спинного мозга, а иннервирующих мышцы челюстно-лицевой области — в моторных ядрах ствола мозга. Аксон мотонейрона при входе в скелетную мышцу ветвится, и каждая веточка участвует в формировании нервно-мышечного синапса на отдельном мышечном волокне (рис. 1).

Рис. 1. Разветвления аксона моторного нейрона на аксонные терминалы. Электронограмма

Рис. Строение скелетной мышцы человека

Скелетные мышцы состоят из мышечных волокон, которые объединяются в мышечные пучки. Совокупность мышечных волокон, иннервируемых веточками аксона одного моторного нейрона, называют двигательной (или моторной) единицей. В глазных мышцах 1 двигательная единица может содержать 3-5 мышечных волокон, в мышцах туловища — сотни волокон, в камбаловидной мышце — 1500-2500 волокон. Мышечные волокна 1 двигательной единицы имеют одинаковые морфофункциональные свойства.

Функциями скелетных мышц являются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга, в том числе осуществление дыхательных движений, обеспечивающих вентиляцию легких;
  • поддержание положения и позы тела.

Скелетные мышцы вместе со скелетом составляют опорно-двигательную систему организма, которая обеспечивает поддержание позы и перемещение тела в пространстве. Наряду с этим скелетные мышцы и скелет выполняют защитную функцию, предохраняя внутренние органы от повреждения.

Кроме того, поперечно-полосатые мышцы имеют значение в выработке тепла, поддерживающего температурный гомеостаз, и в депонировании некоторых питательных веществ.

Рис. 2. Функции скелетных мышц

Физиологические свойства скелетных мышц

Скелетные мышцы обладают следующими физиологическими свойствами.

Возбудимость. Обеспечивается свойством плазматической мембраны (сарколеммы) отвечать возбуждением на поступление нервного импульса. Из-за большей разности потенциала покоя мембраны поперечно-полосатых мышечных волокон (Е 0 около 90 мВ) возбудимость их ниже, чем нервных волокон (Е 0 около 70 мВ). Амплитуда потенциала действия у них больше (около 120 мВ), чем у других возбудимых клеток.

Это позволяет на практике достаточно легко регистрировать биоэлектрическую активность скелетных мыши. Длительность потенциала действия составляет 3-5 мс, что определяет короткую продолжительность фазы абсолютной рефрактерности возбужденной мембраны мышечных волокон.

Проводимость. Обеспечивается свойством плазматической мембраны формировать локальные круговые токи, генерировать и проводить потенциал действия. В результате потенциал действия распространяются по мембране вдоль мышечного волокна и вглубь по поперечным трубочкам, формируемым мембраной. Скорость проведения потенциала действия составляет 3-5 м/с.

Сократимость. Представляет собой специфическое свойство мышечных волокон изменять свою длину и напряжение вслед за возбуждением мембраны. Сократимость обеспечивается специализированными сократительными белками мышечного волокна.

Скелетные мышцы обладают также вязкоэластическими свойствами, имеющими важное значение для расслабления мышц.

Рис. Скелетные мышцы человека

Физические свойства скелетных мышц

Скелетные мышцы характеризуются растяжимостью, эластичностью, силой и способностью совершать работу.

Растяжимость - способность мышцы изменять длину под действием растягивающей силы.

Эластичность - способность мышцы восстанавливать первоначальную форму после прекращения действия растягивающей или деформирующей силы.

- способность мышцы поднимать груз. Для сравнения силы различных мышц определяют их удельную силу путем деления максимальной массы на число квадратных сантиметров ее физиологического сечения. Сила скелетной мышцы зависит от многих факторов. Например, от числа двигательных единиц, возбуждаемых в данный момент времени. Также она зависит от синхронности работы двигательных единиц. Сила мышцы зависит и от исходной длины. Существует определенная средняя длина, при которой мышца развивает максимальное сокращение.

Сила гладких мышц тоже зависит от исходной длины, синхронности возбуждения мышечного комплекса, а также от концентрации ионов кальция внутри клетки.

Способность мышцы совершать работу. Работа мышцы определяется произведением массы поднятого груза на высоту подъема.

Работа мышц возрастаете увеличением массы поднимаемого груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, т.е. снижается высота подъема. Максимальная работа совершается мышцей при средних нагрузках. Это называется законом средних нагрузок. Величина мышечной работы зависит от числа мышечных волокон. Чем толще мышца, тем больший груз она может поднять. Длительное напряжение мышцы приводит к ее утомлению. Это обусловлено истощением энергетических запасов в мышце (АТФ, гликоген, глюкоза), накоплением молочной кислоты и других метаболитов.

Вспомогательные свойства скелетной мускулатуры

Растяжимость — это способность мышцы изменять свою длину под действием растягивающей ее силы. Эластичность — способность мышцы принимать свою первоначальную длину после прекращения действия растягивающей или деформирующей силы. Живая мышца обладает малой, но совершенной эластичностью: уже небольшая сила способна вызвать относительно большое удлинение мышцы, а возвращение ее к первоначальным размерам является полным. Это свойство очень важно для осуществления нормальных функций скелетных мышц.

Сила мышцы определяется максимальным грузом, который мышца в состоянии поднять. Для сравнения силы различных мышц определяют их удельную силу, т.е. максимальный груз, который мышца в состоянии поднять, делят на число квадратных сантиметров ее физиологического поперечного сечения.

Способность мышцы совершать работу. Работа мышцы определяется произведением величины поднятого груза на высоту подъема. Работа мышцы постепенно увеличивается с увеличением груза, но до определенного предела, после которого увеличение груза приводит к уменьшению работы, так как снижается высота подъема груза. Следовательно, максимальная работа мышцей производится при средних величинах нагрузок.

Утомление мышц. Мышцы не могут работать беспрерывно. Длительная работа приводит к снижению их работоспособности. Временное понижение работоспособности мышцы, наступающее при длительной работе и исчезающее после отдыха, называется утомлением мышцы. Принято различать два вида утомления мышц: ложное и истинное. При ложном утомлении утомляется не мышца, а особый механизм передачи импульсов с нерва на мышцу, называемый синапсом. В синапсе истощаются резервы медиаторов. При истинном утомлении в мышце происходят следующие процессы: накопление недоокисленных продуктов распада питательных веществ вследствие недостаточного поступления кислорода, истощение запасов источников энергии, необходимой для мышечного сокращения. Утомление проявляется уменьшением силы сокращения мышцы и степени расслабления мышцы. Если мышца на некоторое время прекращает работу и находится в состоянии покоя, то восстанавливается работа синапса, а с кровью удаляются продукты обмена и доставляются питательные вещества. Таким образом, мышца вновь приобретает способность сокращаться и производить работу.

Одиночное сокращение

Раздражение мышцы или иннервирующего ее двигательного нерва одиночным стимулом вызывает одиночное сокращение мышцы. Различают три основные фазы такого сокращения: латентная фаза, фаза укорочения и фаза расслабления.

Амплитуда одиночного сокращения изолированного мышечного волокна от силы раздражения не зависит, т.е. подчиняется закону «все или ничего». Однако сокращение целой мышцы, состоящей из множества волокон, при ее прямом раздражении зависит от силы раздражения. При пороговой силе тока в реакцию вовлекается лишь небольшое число волокон, поэтому сокращение мышцы едва заметно. С увеличением силы раздражения число волокон, охваченных возбуждением, возрастает; сокращение усиливается до тех пор, пока все волокна не оказываются сокращенными («максимальное сокращение») — этот эффект называется лестницей Боудича. Дальнейшее усиление раздражающего тока на сокращение мышцы не влияет.

Рис. 3. Одиночное сокращение мышцы: А — момент раздражения мышцы; а-6 — скрытый период; 6-в — сокращение (укорочение); в-г — расслабление; г-д — последовательные эластические колебания.

Тетанус мышцы

В естественных условиях к скелетной мышце из центральной нервной системы поступают не одиночные импульсы возбуждения, которые служат для нее адекватными раздражителями, а серии импульсов, на которые мышца отвечает длительным сокращением. Длительное сокращение мышцы, возникающее в ответ на ритмическое раздражение, получило название тетанического сокращения, или тетануса. Различают два вида тетануса: зубчатый и гладкий (рис. 4).

Гладкий тетанус возникает, когда каждый последующий импульс возбуждения поступает в фазу укорочения, а зубчатый - в фазу расслабления.

Амплитуда тетанического сокращения превышает амплитуду одиночного сокращения. Академик Н.Е. Введенский обосновал изменчивость амплитуды тетануса неодинаковой величиной возбудимости мышцы и ввел в физиологию понятия оптимума и пессимума частоты раздражения.

Оптимальной называется такая частота раздражения, при которой каждое последующее раздражение поступает в фазу повышенной возбудимости мышцы. При этом развивается тетанус максимальной величины (оптимальный).

Пессимальной называется такая частота раздражения, при которой каждое последующее раздражение осуществляется в фазу пониженной возбудимости мышцы. Величина тетануса при этом будет минимальной (пессимальной).

Рис. 4. Сокращение скелетной мышцы при разной частоте раздражения: I — сокращение мышцы; II — отметка частоты раздражения; а — одиночные сокращения; б- зубчатый тетанус; в — гладкий тетанус

Режимы мышечных сокращений

Для скелетных мышц характерны изотонический, изометрический и смешанный режимы сокращения.

При изотоническом сокращении мышцы изменяется ее длина, а напряжение остается постоянным. Такое сокращение происходит в том случае, когда мышца не преодолевает сопротивления (например, не перемещает груз). В естественных условиях близкими к изотоническому типу сокращениями являются сокращения мышц языка.

При изометрическом сокращении в мышце во время ее активности нарастает напряжение, но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается. Длина мышечных волокон остается постоянной, меняется лишь степень их напряжения.

Сокращаются по аналогичным механизмам.

В организме сокращения мышц никогда не бывают чисто изотоническими или изометрическими. Они всегда имеют смешанный характер, т.е. происходит одновременное изменение и длины, и напряжения мышцы. Такой режим сокращения называется ауксотоническим, если преобладает напряжение мышцы, или ауксометрическим, если преобладает укорочение.