Что такое креатинфосфат. Энергетические процессы в мышце для максимального роста

История креатина

Креатин был открыт в 1832 году французским ученым Шёврелем, который обнаружил неизвестный до этого компонент скелетных мышц, позднее он назвал креатином, от греческого kreas, что в переводе означает «мясо».

После открытия Шёврелем креатина в 1835 году другой ученый – Либерг – подтвердил, что креатин – обычный компонент мышц млекопитающих. Примерно в это же время исследователи Хайнц и Петтенкофер обнаружили в моче вещество, названное «креатинином». Они предположили, что креатинин образуется из накопленного в мышцах креатина. Уже в начале XX столетия учеными был проведен ряд исследований креатина как добавки к питанию. Было обнаружено, что не весь креатин, принимаемый внутрь, выводится вместе с мочой. Это свидетельствовало о том, что часть креатина остается в организме.

Исследователи Фолин и Денис в 1912 и 1914 гг. соответственно определили, что добавка креатина в пищу увеличивала содержание креатина в мышечных клетках. В 1923 году Хан и Мейер вычислили общее содержание креатина в организме мужчины, весящего 70 кг, которое оказалось равным приблизительно 140 грамм. Уже в 1926 году было экспериментально доказано, что введение креатина в организм стимулирует рост мышечной массы, вызывая задержку «азота» в организме. В 1927 году исследователи Фиске и Саббароу обнаружили «фосфокреатин», представляющий собой химически связанные молекулы креатина и фосфата, накапливаемые в мышечной ткани. Свободные формы креатина и фосфорилированного фосфокреатина признаны ключевыми промежуточными продуктами обмена веществ в скелетной мускулатуре.

Первое исследование, которое четко показало эффект креатина у человека, было проведено в конце 1980х годов в лаборатории доктора Эрика Халтмана в Швеции. В ходе исследования было обнаружено, что потребление 20 г креатина моногидрата ежедневно в течение 4-5 дней увеличивало содержание креатина в мышцах примерно на 20%. Результаты этой работы, однако, были обнародованы только в 1992 году в журнале Clinical Science, с тех пор начинается история приема креатина в бодибилдинге.

Идея "загрузки" и последующих поддерживающих дозировок была разработана доктором Гринхоффом в университете Ноттингема в 1993-1994 годах, результаты исследований были опубликованы в соавторстве с доктором Халтманом. Доктор Гринхофф с коллегами проводили исследования мышечных тканей для изучения действия креатиновой загрузки.

В 1993 году в журнале Scandinavian Journal of Medicine, Science and Sports была опубликована статья, показывающая, что применение креатина может вызывать существенное увеличение массы тела и силы мышц (даже за одну неделю применения) и что применение именно этого препарата лежит в основе улучшения результатов тренировок высокой интенсивности.


В 1994 году Anthony Almada с коллегами проводили исследования в Женском Университете Техаса. Основной целью исследований была демонстрация того, что увеличение массы тела при применении креатина происходит за счет прироста "сухой" мышечной массы (без участия жира) и что прием креатина ведет к увеличению силовых показателей (проверялись результаты в жиме лежа). Результаты исследований были опубликованы в журнале Acta Physiologica Scandinavica.

Начиная с 1993-1995 гг. среди новинок спортивного питания в бодибилдинге нет более популярной пищевой добавки, чем креатин. Фактически с этого времени и началось победное шествие креатина по странам и континентам в самых различных видах спорта.

В начале 90х годов прошлого века, в Британии уже имелись низкоактивные добавки креатина, и только после 1993 года была разработана качественная креатининовая добавка для увеличения силовых показателей, доступная для массового покупателя. Выпустила ее компания Experimental and Applied Sciences (EAS) представив креатин под торговым названием Phosphagen.

В 1998 году MuscleTech Research and Development запустила в продажу Cell-Tech, первую добавку, совмещавшую в себе креатин, углеводы и альфа-липоевую кислоту. Альфа-липоевая кислота позволила еще больше повысить уровень фосфокреатина в мышцах и общую концентрацию креатина. Исследования в 2003 году подтвердили эффективность этой комбинации, однако надо признать, что уровень эффективности довольно низкий.

Но ученые фирмы Sci Fit пошли дальше и разработали в 2001 году новый вид обработки креатина – Kre-Alkalyn, "взломав код креатина", как писали об этой разработке в научных журналах в мире спорта и бодибилдинга, и запатентовав это изобретение, получив патент № 6,399,611. Уже через три года эта новость сменилась новой, так как была доказана провальная неполноценность такого подхода.

Еще одно важное событие произошло в 2004 году, когда мир впервые услышал об этиловом эфире креатина (Creatine ethyl ester (CEE)), популярность которого моментально возросла. В настоящее время CEE широко применяется и производится многими компаниями наряду с креатином моногидратом. Но его эффективность по сравнению с моногидрат креатином не доказана.

Кроме того, в последнее десятилетие были синтезированы трикреатин малат (Tri-Creatine Malate), дикреатин малат, этиловый эфир креатин малата, креатин альфа-кетоглютарат и некоторые другие формы креатина, но особого распространения они не получили, ввиду низкой эффективности.

Биологическая роль креатина

Креатин – это натуральное вещество, которое содержится в мышцах человека и животных, и требуется для энергетического обмена и выполнения движений. В организме человека имеется около 100 -140 г этого вещества, выполняющего функцию источника энергии для мышц. Суточный расход креатина в обычных условиях составляет примерно 2 г. Креатин так же важен для жизни, как белок, углеводы, жиры, витамины и минералы. Креатин может синтезироваться организмом самостоятельно из 3-х аминокислот: глицина, аргинина и метионина. Эти аминокислоты – компоненты белка.

У людей ферменты, вовлеченные в синтез креатина, локализуются в печени, поджелудочной железе и почках. Креатин может быть произведен в любом из этих органов, и затем транспортирован кровью в мышцы. Приблизительно 95% общего пула креатина запасается в тканях скелетной мускулатуры.

При увеличении физической нагрузки расход креатина тоже увеличивается, и его запас должен быть пополнен с помощью диеты или за счет собственного натурального производства организмом.

Решающим фактором для достижения высоких результатов в спорте является способность организма высвобождать большое количество энергии за короткий промежуток времени. В принципе наш организм постоянно получает энергию, расщепляя углеводы и жир.

Непосредственным же источником энергии для сокращения скелетной мускулатуры является молекула, называемая АТФ (аденозина трифосфат). Количество АТФ имеющееся в непосредственном распоряжении, ограничено и является решающим для спортивной активности.

Все источники топлива – углеводы, жиры и белок – сначала конвертируются путем различных химических реакций в АТФ, которая затем становится доступной как единственная молекула, которую тело использует для энергии. Когда АТФ высвобождает энергию, чтобы обеспечить энергией мышечные сокращения, фосфатная группа отщепляется, и формируется новая молекула, называющаяся АДФ (аденозина дифосфат). Эта реакция обратима за счет креатин-фосфата, богатого энергией вещества.

Креатин комбинируется с фосфатом в организме, чтобы образовать фосфокреатин, который является определяющим фактором энергопродукции в мышечной ткани.

Эффекты креатина

Увеличение силы

В бодибилдинге, во время выполнения высокоинтенсивных упражнений потребность в АТФ в работающих мышцах значительно увеличивается – в сотни раз выше по сравнению с состоянием покоя. Истощенные запасы АТФ и фосфокреатина должны постоянно пополняться для того, чтобы мышечные сокращения могли продолжаться на пиковых уровнях частоты и интенсивности. Увеличивая фосфокреатин путем приема моногидрата креатина, вы можете увеличивать количество АТФ и, таким образом, повышается сила мышц.

Креатинфосфорная кислота (креатинфосфат , фосфокреатин) - 2-[метил-(N"-фосфонокарбоимидоил)амино]уксусная кислота. Бесцветные кристаллы, растворимые в воде, легко гидролизуется с расщеплением фосфамидной связи N-P в кислой среде, устойчива в щелочной.

Кислота была открыта Филиппом и Грейс Эгглтонами из Кембриджского университета и независимо Сайрусом Фиске и Йеллапрагадой Суббарао из Гарвардской медицинской школы в 1927 году.

Лабораторный синтез - фосфорилирование креатина POCl 3 в щелочной среде.

Креатинфосфат - продукт обратимого метаболического N-фосфорилирования креатина , являющийся, подобно АТФ , высокоэнергетическим соединением. Однако, в отличие от АТФ, гидролизуемой по пирофосфатной связи O-P, креатинфосфат гидролизуется по фосфамидной связи N-P, что обуславливает значительно больший энергетический эффект реакции. Так, при гидролизе изменение свободной энергии для креатина G 0 ~ −43 кДж/моль, в то время как при гидролизе АТФ до АДФ G 0 ~ −30.5 кДж/моль.

Креатинфосфат содержится преимущественно в возбудимых тканях (мышечная и нервная ткани) и его биологической функцией является поддержание постоянной концентрации АТФ за счёт обратимой реакции перефосфорилирования:

креатинфосфат + АДФ ⇔ креатин + АТФ

Эта реакция катализируется цитоплазматическими и митохондриальными ферментами-креатинкиназами; при расходе (и, соответственно, падении концентрации) АТФ, например, при сокращении клеток мышечной ткани, равновесие реакции сдвигается вправо, что ведёт к восстановлению нормальной концентрации АТФ.

Концентрация креатинфосфата в покоящейся мышечной ткани в 3-8 раз превышает концентрацию АТФ, что позволяет компенсировать расход АТФ во время кратких периодов мышечной активности, в период покоя при отсутствии мышечной активности в ткани идёт гликолиз и окислительное фосфорилирование АДФ в АТФ, в результате чего равновесие реакции смещается влево и концентрация креатинфосфата восстанавливается.

В тканях креатинфосфат подвергается самопроизвольному неферментативному гидролизу с циклизацией в креатинин , выводящийся с мочой , уровень выделения креатинина зависит от состояния организма, меняясь при патологических состояниях, и является диагностическим признаком.

Креатинфосфат является одним из фосфагенов - N-фосфорилированных производных гуанидина , являющихся энергетическим депо, обеспечивающим быстрый синтез АТФ. Так, у многих беспозвоночных (например, насекомых) роль фосфагена играет аргининфосфорная кислота , у некоторых кольчатых червей - N-фосфоломбрицин.

Химическое название: N-[Имино(фосфонамино)метил]-N-метилглицина динатриевая соль тетрагидрат.

Описание: Лиофилизированный порошок белого или почти белого цвета, с возможной агрегацией частиц.

Состав: 1 флакон содержит: действующее вещество: креатинфосфат динатриевая соль (в виде креатинфосфата динатриевой соли тетрагидрата) - 1,0 г.

Лекарственная форма: Лиофилизат для приготовления раствора для инфузий.

Фармакотерапевтическая группа: различные средства для лечения заболеваний сердца.

Код АТС: C01EB06.

Фармакологические свойства

Фармакодинамика

Креатинфосфат (фосфокреатин) играет ключевую роль в энергетическом обеспечении механизма мышечного сокращения. В миокарде и в скелетных мышцах креатинфосфат является запасной формой биохимической энергии, которая используется для ресинтеза АТФ, за счет гидролиза обеспечивает энергией процесс сокращения мышц. При ишемии мышечной ткани содержание креатинфосфата в миоцитах быстро снижается, что является одной из ведущих причин нарушения сократимости. Креатинфосфат улучшает метаболизм миокарда и мышечной ткани, замедляет снижение сократительной способности сердечной мышцы при ишемии, обладает кардиопротекторным действием на ишемизированный миокард.

Экспериментальные кардиофармакологические исследования подтвердили метаболическую роль креатинфосфата и его защитные свойства по отношению к миокарду:

а) Введение креатинфосфата внутримышечно оказывает дозозависимый защитный эффект при различных кардиомиопатиях, индуцированных: изопреналином у крыс и голубей, тироксином у крыс, эметином у морской свинки, р-нитрофенолом у крыс;

б) Креатинфосфат оказывает положительное инотропное действие на изолированном сердце лягушки, морской свинки, крысы, а также в условиях дефицита глюкозы, Ca 2+ или передозировки К + ;

в) Креатинфосфат противодействует отрицательному инотропному эффекту, индуцированному аноксией на изолированном предсердии морской свинки;

г) Добавление креатинфосфата в кардиоплегические растворы усиливает защиту миокарда в различных экспериментальных моделях, как на изолированном органе, так и in vivo;

На сердце крысы при сердечно-легочном шунтировании и ишемической остановке сердца перфузия с кардиоплегическими растворами с добавлением креатинфосфата в состояниях, как нормы, так и при гипотермии, защищает сердце от ишемического повреждения; этот защитный эффект при добавлении калия, магния и прокаина является оптимальным при концентрации креатинфосфата 10 ммоль/л;

На работающем изолированном сердце крысы, в условиях региональной ишемии (перевязка на 15 мин левой передней нисходящей коронарной артерии), предишемическое инфузионное введение креатинфосфата (10 ммоль/л) оказывает защитное действие против развития реперфузионной аритмии;

На изолированном сердце собаки и in vivo (на нормальном и гипертрофическом сердце) после остановки сердца с помощью гиперкалиевых растворов перфузия кардиоплегических растворов с креатинфосфатом выполняет защитную роль; при этом регистрируется снижение деградации АТФ и креатинфосфата, сохранение структуры митохондрий и сарколеммы, улучшение функционального восстановления после реперфузионной аритмии;

На сердце свиньи in vivo в условиях шунтирования кровообращения добавление креатинфосфата в кардиоплегические растворы обеспечивает наилучшую защиту миокарда;

д) Креатинфосфат выполняет защитную роль при экспериментальном инфаркте миокарда и при коронарной окклюзии:

У собак во время экспериментального инфаркта миокарда, полученного путем перевязки огибающей артерии, введение креатинфосфата (200 мг/кг болюсно с последующей инфузией 5 мг/кг/мин) стабилизирует гемодинамические параметры, оказывает антиаритмический и антифибрилляторный эффекты, предупреждает снижение сократительной функции сердца при ишемии, тем самым ограничивая расширение зоны инфаркта;

У крыс в условиях наложения коронарной лигатуры креатинфосфат снижает частоту и продолжительность фибрилляции желудочков;

Внутривенное вливание креатинфосфата уменьшает область инфаркта у кролика и кота после перевязки коронарной артерии;

е) Кардиопротекторное действие креатинфосфата связанно со стабилизацией сарколеммы, сохранением клеточного пула адениннуклеотидов для ингибирования ферментов нуклеотидного катаболизма, препятствуя деградации фосфолипидов в ишемическом миокарде, может улучшить микроциркуляцию в ишемических зонах и ингибировать АДФ-индуцированную агрегацию тромбоцитов.

Фармакокинетика

У кроликов после однократного внутримышечного введения креатинфосфата максимальное содержание креатинфосфата в кровотоке, составляющее 25-28% от введенной дозы, наблюдается через 20-40 мин после введения. Концентрация креатинфосфата медленно снижается и через 250 мин после введения в кровотоке содержится 9% экзогенного креатинфосфата. После однократного внутримышечного введения креатинфосфата наблюдается также повышение уровня АТФ. Эффект обнаруживается через 40 мин после введения и продолжается до 250 мин. При этом максимальное увеличение концентрации АТФ на 25% происходит через 100 мин после введения креатинфосфата. После внутривенного введения у кроликов креатинфосфат остается в кровотоке с постепенным уменьшением содержания в течение 30 мин. В этом случае также происходит увеличение в крови концентрации АТФ на 24% с возвращением к нормальному уровню через 300 мин.

У людей в условиях однократного внутривенного введения период полувыведения креатинфосфата начинается от 5 до 12 минут. После введения креатинфосфата в дозе 5 г путем медленной инфузии содержание креатинфосфата в крови составляет около 5 нмоль/мл через 40 мин, а через 40 мин после введения креатинфосфата в дозе 10 г содержание креатинфосфата в крови составляет около 10 нмоль/мл. После внутримышечного введения креатинфосфат появляется в кровотоке уже через 5 мин, достигая через 30 мин максимальных концентраций около 10 нмоль/мл для дозы 500 мг и около 11-12 нмоль/мл для дозы 750 мг. Через 60 мин после введения концентрация креатинфосфата в крови снижается до
4-5 нмоль/мл. Через 120 мин после введения остаточное содержание экзогенного креатинфосфата составляет 1-2 нмоль/мл.

Показания к применению

Креатинфосфат применяется в составе комбинированной терапии следующих заболеваний:

    острого инфаркта миокарда;

    хронической сердечной недостаточности;

    интраоперационной ишемии миокарда;

    интраоперационной ишемии нижних конечностей

    метаболические нарушения миокарда в условиях гипоксии

    в спортивной медицине для профилактики развития синдрома острого и хронического физического перенапряжения и улучшения адаптации спортсменов к экстремальным физическим нагрузкам.

Способ применения и дозы

Лекарственное средство вводят ТОЛЬКО ВНУТРИВЕННО (в/в, струйно или капельно) в соответствии с назначением врача в течение 30-45 минут по 1 г 1-2 раза в день.

Креатинфосфат вводят в максимально короткие сроки с момента проявления признаков ишемии, что улучшает прогноз заболевания. Содержимое флакона растворяют в 10 мл воды для инъекций, 10 мл 0,9 % раствора натрия хлорида для инфузий или 5% раствора глюкозы для инфузий. Интенсивно встряхивают флакон до полного растворения. Как правило, полное растворение лекарственного средства занимает не менее 3-х минут.

Креатинфосфат применяют в составе кардиоплегических растворов в концентрации 10 ммоль/л (~2,1 г/л) для защиты миокарда во время операции на сердце. Добавляют в состав раствора непосредственно перед введением.

Острый инфаркт миокарда

1 сутки: 2-4 г препарата, разведенного в 50 мл воды для инъекций, в виде в/в быстрой инфузии с последующей в/в инфузией 8-16 г в 200 мл 5% раствора декстрозы (глюкозы) в течение 2 ч.

2 сутки: 2-4 г в 50 мл воды для инъекций в/в капельно (длительность инфузии не менее 30 минут) 2 раза в сутки

3 сутки: 2 г в 50 мл воды для инъекций в/в капельно (длительность инфузии не менее 30 минут) 2 раза в сутки При необходимости курс инфузий по 2 г препарата 2 раза в сутки можно проводить в течение 6 дней. Наилучшие результаты лечения регистрировались у больных, которым первое введение препарата осуществляли не позднее, чем через 6 – 8 ч. от появления клинических проявлений заболевания.

Хроническая сердечная недостаточность

В зависимости от состояния пациента можно начать лечение «ударными» дозами по 5-10 г препарата в 200 мл 5% раствора декстрозы (глюкозы) в/в капельно со скоростью 4-5 г/ч в течение 3-5 дней, а затем перейти на в/в капельное введение (длительность инфузии не менее 30 минут) 1-2 г препарата, разведенного в 50 мл воды для инъекций, 2 раза в сутки в течение
2-6 недель или сразу начать в/в капельное введение поддерживающих доз лекарственного средства Креатинфосфат (1-2 г в 50 мл воды для инъекций 2 раза в сутки. в течение 2-6 недель).

Интраоперационная ишемия миокарда

Рекомендуется курс в/в капельных инфузий длительностью не менее 30 минут по 2 г препарата в 50 мл воды для инъекций 2 раза в сутки в течение 3-5 дней, предшествующих хирургическому вмешательству, и в течение 1-2 дней после него. Во время хирургического вмешательства лекарственного средства Креатинфосфат добавляют в состав обычного кардиоплегического раствора в концентрации 10 ммоль/л или 2,5 г/л непосредственно перед введением.

Интраоперационная ишемия нижних конечностей

2-4 г лекарственного средства Креатинфосфат в 50 мл воды для инъекций в виде в/в быстрой инфузии до хирургического вмешательства с последующим в/в капельным введением 8-10 г препарата в 200 мл 5% раствора декстрозы (глюкозы) со скоростью 4-5 г/ч во время хирургического вмешательства и в период реперфузии.

Метаболические нарушения миокарда в условиях гипоксии

Лекарственное средство вводят внутривенно 1 - 2 г в сутки в виде болюсной инъекции или инфузии.

Спортивная медицина

для профилактики развития синдрома острого и хронического физического перенапряжения и улучшения адаптации спортсменов к экстремальным физическим нагрузкам лекарственного средства Креатинфосфат следует применять в дозе 1 г/сут в 50 мл воды для инъекций в/в капельно (длительность инфузии не менее 30 минут) в течение 3-4 недель.

Побочное действие
При применении по показаниям в рекомендованных дозах побочное действие не выявлено.

Возможно снижение артериального давления при быстром внутривенном введении.

Противопоказания

Индивидуальная повышенная чувствительность к препарату.

В высоких дозах (5-10 г/сут) препарат противопоказан при хронической почечной недостаточности.

Дети в возрасте до 18 лет (эффективность и безопасность не установлены).

Передозировка
Данных о случаях передозировки препарата нет.

Меры предосторожности
Специальные предупреждения и меры предосторожности при использовании

Быстрое внутривенное введение высоких доз, более 1 г креатинфосфата, может вызвать падение артериального давления. Введение высоких доз креатинфосфата (5-10 г/сут) может приводить к увеличению количества фосфатов с потенциально возможным влиянием на метаболизм кальция и на секрецию гормонов, которые регулируют гомеостаз, функцию почек, метаболизм пуринов. Такие дозировки должны быть использованы только в определенных редких случаях и в короткий период времени.

Влияние на способность вождения транспортного средства и обслуживания механического оборудования
Сообщений о влиянии на способность управлять автомобилем и использовать механическое оборудование не имеется.

Беременность и лактация
Данных об эффективности и безопасности применения препарата во время беременности и в период лактации нет.

В качестве предупредительной меры предпочтительно не применять креатинфосфат во время беременности и лактации. Если вы беременны, планируете забеременеть или кормить грудью, вам следует сообщить об этом врачу перед использованием данного лекарственного средства.

Взаимодействие с другими лекарственными средствами
При применении в составе комбинированной терапии лекарственное средство Креатинфосфат способствует повышению эффективности антиаритмических, антиангинальных средств и средств с положительным инотропным действием.

Условия хранения
Хранить в защищенном от света месте при температуре не выше 25 о С.
Хранить в недоступном для детей месте.

Срок годности
2 года. Не использовать по истечении срока годности.

Условия отпуска
По рецепту врача.

Упаковка
1 флакон стеклянный в упаковке №1 вместе с инструкцией по медицинскому применению во вторичной упаковке из картона коробочного.

Информация о производителе
Белорусско-голландское совместное предприятие общество с ограниченной ответственностью «Фармлэнд», Республика Беларусь, Минская область, г.Несвиж, ул. Ленинская, 124, к.3, тел/факс 293- 31- 90.

Среди высокоэнергетических фосфорилированных соединений имеется одно, играющее особую роль в энергетике возбудимых тканей, таких, как мышечная и нервная. Это соединение, креатинфосфат, или фосфокреатин (рис. 14-13), служит резервуаром высокоэнергетических фосфатных групп. гидролиза креатинфосфата несколько превышает гидролиза АТР.

Креатинфосфат может передавать свою фосфатную группу на ADP в реакции, катализируемой креатинкиназой:

Благодаря креатинфосфату концентрация АТР в мышечных клетках поддерживается на постоянном и притом довольно высоком уровне. Особенно это существенно для скелетных мышц, работающих с перерывами, но иногда очень напряженно с большой скоростью. Всякий раз, когда часть АТР мышечной клетки расходуется на сокращение, в результате гидролиза АТР образуется ADP. Креатинфосфат при участии креатинкиназы быстро передает свою фосфатную группу молекулам ADP, и нормальный уровень АТР восстанавливается. Содержание креатинфосфата в мышцах в 3-4 раза превышает содержание АТР (табл. 14-4); поэтому в форме креатинфосфата может храниться достаточное количество фосфатных групп, полностью обеспечивающее поддержание постоянного уровня АТР в короткие периоды усиленной мышечной активности.

Рис. 14-12. В ресничках и жгутиках эукариотических клеток механическая сила развивается за счет использования АТР. А. Поперечный разрез реснички. Эти структуры состоят из девяти пар микротрубочек, образующих наружное кольцо, и двух одиночных центральных микротрубочек (расположение по типу «9 + 2»; разд. 2.16). Реснички окружены оболочкой, представляющей собой вырост клеточной мембраны. Энергию для характерных движений ресничек (волнообразного, скользящего или вращательного) поставляет гидролиз АТР. Эти движения осуществляются ресничками за счет скольжения или скручнвання парных микротрубочек, которое весьма напоминает наблюдаемое в скелетных мышцах АТР-зависимое скольжение толстых и тонких нитей друг относительно друга. От наружных (парных) микротрубочек отходят находящиеся на равном расстоянии друг от друга отростки, или выступы, напоминающие миозиновые головки в толстых нитях мышц. Эти выступы состоят из молекул динеина - довольно крупного белка, обладающего АТРазной активностью. Катализируемый динеином гилролиз АТР поставляет энергию для механического движения - скольжения или скручивания микротрубочек. Было высказано предположение, что центральные микротрубочки регулируют скорость движения ресничек. Б. Отдельные фазы биения реснички в жабрах морского червя, у которого реснички имеют длину около 30 мкм. Эти характерные движения сообщает ресничкам АТР-зависимое скольжение трубчатых нитей друг относительно друга.

Рис. 14-13. Креатинфосфат в мышцах играет роль запасного донора высокоэнергетических фосфатных групп. Он действует как своеобразный буфер, обеспечивающий постоянство концентрации АТР.

Благодаря обратимости креатинкиназной реакции накопившийся креатин в период восстановления вновь фосфорилируется за счет АТР до креатинфосфата. Поскольку другого метаболического пути для образования и расщепления креатинфосфата не существует, это соединение хорошо приспособлено для выполнения своей функции - резервуара фосфатных групп.

В мышцах многих беспозвоночных роль носителя резервной формы энергии выполняет не креатинфосфат, а аргипипфосфат. Соединения, служащие, подобно креатинфосфату и аргининфосфату, запасными источниками энергии, носят название фосфагенов.

14.16. АТР поставляет энергию также и для активного транспорта через мембраны

Химическая энергия АТР используется также и для выполнения осмотической работы, т.е. работы, необходимой для переноса каких-либо ионов или молекул через мембрану из одного компартмента в другой, в котором их концентрация выше. Мы можем рассчитать количество свободной энергии, необходимое для переноса 1 моль неионизованного растворенного вещества через мембрану, например из окружающей среды в клетку, если нам известны концентрации растворенного вещества в несвязанной форме в окружающей среде и в клетке (рис. 14-14). Для такого расчета воспользуемся общим уравнением

где - молярная концентрация данного растворенного вещества в окружающей среде, - его молярная концентрация в клетке, R - газовая постоянная и Т - абсолютная температура. Пользуясь этим уравнением, можно определить количество свободной энергии, необходимое для того, чтобы переместить 1 моль глюкозы против стократного градиента концентрации, например из среды с исходной концентрацией глюкозы в компартмент, где ее конечная концентрация составит . Подставляя в уравнение соответствующие значения, получаем

Рис. 14-14. Активный транспорт растворенного вещества против градиента концентрации. Начиная с момента равновесия, т.е. с того момента. когда концентрации данного растворенного вещества в обоих компартментах одинаковы, активный транспорт вещества из одного компартмента в другой обеспечивает его перемещение против градиента концентрации. Для создания и поддержания градиента концентрации какого-либо растворенною вещества между компартментами, находящимися по обе стороны мембраны, требуется затрата свободной энергии. Если энергия почему-либо перестает поступать, то вещество из компартмента с более высокой его концентрацией начинает диффундировать обратно, и диффузия продолжается до тех пор. пока снова не установится равновесие, т. е. пока концентрации вещества по обе стороны мембраны не сравняются.

Изменение свободной энергии выражается в этом случае положительной величиной, и это значит, что 2,72 ккал свободной энергии, которые требуются для переноса 1 моля глюкозы (или любого нейтрального вещества) против стократного градиента концентрации, должны быть переданы системе за счет какой-то сопряженной реакции, способной служить источником энергии.

Градиенты концентрации между двумя сторонами клеточных мембран (трансмембранные градиенты) варьируют очень сильно. Пожалуй, максимальный градиент концентрации в организме поддерживается плазматической мембраной обкладочных клеток слизистой оболочки желудка, секретирующих соляную кислоту в желудочный сок. Концентрация в желудочном соке может достигать тогда как концентрация ионов в клетках составляет приблизительно . Это означает, что обкладочные клетки обладают способностью секретировать ионы водорода даже против градиента порядка . По-видимому, эти клетки имеют какие-то очень активные мембранные «насосы» для секреции ионов водорода, так как для поддержания столь высокого градиента концентрации требуется значительное количество энергии. Перенос веществ через мембраны против градиента концентрации называют активным транспортом. Образование желудочной стимулируется особым, связанным с мембраной ферментом - так называемой -транспортирующей АТРазой. При образовании желудочного сока на каждую молекулу цитозольного АТР, гидролизованного до ADP и фосфата, из цитозоля наружу через плазматическую мембрану выводятся два иона .

Другим важным примером активного транспорта может служить перенос ионов через плазматическую мембрану во всех животных клетках. Лучше всего изучен этот процесс в эритроцитах. Установлено, что концентрация в цитозоле эритроцитов достигает примерно тогда как в плазме крови она составляет всего . В то же время концентрация в плазме крови достигает а в эритроцитах она равна приблизительно . Для поддержания столь высоких трансмембранных градиентов требуется энергия АТР. В мембране эритроцита содержится специализированный фермент, получивший название -транспортирующей АТРазы, который функционирует и как фермент, и как молекулярный насос. Эта АТРаза катализирует гидролитическое расщепление АТР до ADP и фосфата, а высвобождающуюся при этом свободную энергию использует для перекачивания ионов из окружающей среды внутрь клетки, а ионов из клетки в окружающую среду (рис. 14-15). Стадией, на которой происходит передача энергии в этом процессе, является перенос концевой фосфатной группы АТР на молекулу -АТРазы.

Рис. 14-15. Схема, поясняющая действие -АТРазы. Для транспорта в клетку (где его концентрация выше, чем в окружающей среде) и транспорта из клетки в окружающую среду (где концеш рация этих ионов выше, чем в клетке) требуется свободная энергия. Источником ее служит гидролиз АТР. На каждую молекулу АТР, гидролизованного до ADP и из клетки выходят три иона и два иона поступают в нее из окружающей среды. Этот транспорт ионов включает два этапа. На первом этапе молекула АТРазы фосфорилируется под действием АТР. и это позволяет ей присоединить ион На втором этапе присоединяется ион следствием чего оказывается перенос и К через мембрану с отщеплением свободного фосфата, поступающего в цитозоль. АТР и продукты его гидролиза (ADP и ) остаются в клетке.

Тема: «ОСОБЕННОСТИ ОБМЕНА ГЛИЦИНА, СЕРИНА, СЕРУСОДЕРЖАЩИХ И АРОМАТИЧЕСКИХ АМИНОКИСЛОТ»

1. Пути образования и использования глицина и серина в организме. Роль тетрагидрофолиевой кислоты в образовании и переносе одноуглеродных групп.
2. Пути образования и использования цистеина в организме. S-Аденозилметионин, его участие в реакциях переноса метильных групп. Роль метилкобаламина и метил-ТГФК в регенерации метионина в организме. Метильная конъюгация.
3. Биосинтез креатина и креатинфосфата, биологическая роль. Образование и выделение креатинина. Клинико-диагностическое значение определения содержания креатина и креатинина в крови и моче.
4. Обмен фенилаланина и тирозина, особенности их катаболизма, участие в синтезе гормонов, нейромедиаторов и пигментов. Особенности катаболизма фенилаланина и тирозина.
5. Врождённые нарушения обмена фенилаланина и тирозина (фенилкетонурия, алкаптонурия, альбинизм): основные симптомы, биохимическая диагностика, особенности диеты.

Обмен серина и глицина. Образование и перенос одноуглеродных групп.

Главную роль в реакциях обмена серина и глицина играют ферменты, в состав которых в качестве кофермента входит тетрагидрофолиевая кислота (ТГФК). ТГФК образуется в организме в результате восстановления фолиевой кислоты (витамина Вс).

фолиевая кислота


ТГФК

25.1.2. Реакционноспособными центрами в молекуле ТГФК являются атомы азота в положениях 5 и 10. Атомы водорода при N5 и N10 могут замещаться на различные одноуглеродные группы: метильную (-СН3), метиленовую (-СН2-), метенильную (=СН-), формильную (-СН=О) и некоторые другие. Основными источниками одноуглеродных групп в клетке служат серин и глицин.

5,10-Метилен-ТГФК используется как донор метильной группы в реакциях биосинтеза тимидилового нуклеотида .

При окислении 5,10-метилен-ТГФК образуются 5,10-метенил-ТГФК и 10-формил-ТГФК. Эти производные ТГФК служат источниками атомов углерода в процессе биосинтеза пуриновых нуклеотидов (аденилового и гуанилового) .

При восстановлении 5,10-метилен-ТГФК образуется 5-метил-ТГФК. Это соединение интересно тем, что может поставлять метильную группу для регенерации метионина из гомоцистеина (см. далее).

25.1.3. Аминокислота глицин , помимо участия в синтезе белка и образовании различных одноуглеродных групп, является предшественником ряда специализированных биомолекул:

  • оба атома углерода и атом азота глицина могут включаться в структуру пуринового ядра (атомы С4, С5 и N7);
  • глицин является главным предшественником порфиринов (простетической группы гемоглобина, миоглобина, цитохромов);
  • глицин участвует в синтезе креатина - предшественника креатинфосфата, участвующего в биоэнергетике мышечной и нервной ткани;
  • глицин входит в состав пептидного кофермента глутатиона;
  • участвует в образовании конъюгатов (гликохолевая кислота, гиппуровая кислота).

Обмен метионина и цистеина. Реакции трансметилирования

Метильная группа метионина, связанная с атомом серы, также представляет собой подвижную одноуглеродную группу, способную участвовать в реакциях трансметилирования (переноса метильной группы). Активной формой метионина, принимающей непосредственное участие в этих превращениях, является S-аденозилметионин, который образуется при взаимодействии метионина с АТФ.

Примеры реакций трансметилирования с участием S-аденозилметионина приводятся в таблице 25.1.

Таблица 25.1

Использование метильной группы S-аденозилметионина в реакциях трансметилирования

Вот некоторые примеры этих реакций.

1) Образование фосфатидилхолина из фосфатидилэтаноламина - ключевая реакция синтеза фосфолипидов:

Фосфатидилхолин - главный фосфолипидный компонент биологических мембран; он входит в состав липопротеинов, принимает участие в транспорте холестерола и триацилглицеролов; нарушение синтеза фосфатидилхолина в печени приводит к жировой инфильтрации.

2) Образование адреналина из норадреналина - заключительная реакция синтеза гормона мозгового вещества надпочечников:

Адреналин выделяется в кровь при эмоциональном стрессе и участвует в регуляции углеводного и липидного обмена в организме.

3) Реакции метильной конъюгации - один из этапов обезвреживания чужеродных соединений и эндогенных биологически активных веществ:

В результате метилирования блокируются реакционноспособные SH- и NН-группы субстратов. Продукты реакции не обладают активностью и выводится из организма с мочой.

25.2.3. После отдачи метильной группы S-аденозилметионин превращается в S-аденозилгомоцистеин. Последний расщепляется на аденозин и гомоцистеин. Гомоцистеин может вновь превращаться в метионин за счёт метильной группы 5-метил-ТГФК (см. предыдущий параграф):

В этой реакции в качестве кофермента участвует метилкобаламин - производное витамина В12. При недостатке витамина В12 нарушается синтез метионина из гомоцистеина и накапливается 5-метил-ТГФК. Так как реакция образования 5-метил-ТГФК из 5,10-метилен-ТГФК необратима, одновременно возникает дефицит фолиевой кислоты.

25.2.4. Другим путём использования гомоцистеина, как уже упоминалось, является участие в синтезе цистеина . Биологическая роль цистеина:

  • входит в состав белка, где может образовывать дисульфидные связи, стабилизирующие пространственную структуру макромолекулы;
  • участвует в синтезе глутатиона, причём цистеиновая SH-группа определяет реакционную способность этого кофермента;
  • является предшественником тиоэтаноламина в молекуле HS-КоА;
  • служит предшественником таурина в конъюгированных желчных кислотах;
  • является источником атома серы в органических сульфатах (хондроитинсульфат, гепарин, ФАФС).

Биосинтез креатина и его последующие превращения.

Синтез креатина в тканях человека протекает в две стадии. На первой стадии в почках образуется гуанидинацетат:

На второй стадии в печени происходит реакция трансметилирования:

25.3.2. Синтезированный в печени креатин поступает в кровь и доставляется в мышцы. Там он взаимодействует с АТФ, в результате чего образуется макроэргическое соединениекреатинфосфат. Эта реакция легко обратима.

В состоянии покоя мышцы накапливают креатинфосфат (его содержание в неработающей мышце в 3-8 раз выше, чем содержание АТФ). При переходе к мышечной работе изменяется направление реакции и образуется АТФ, необходимый для мышечного сокращения.

Образование АТФ при участии креатинфосфата - наиболее быстрый путь генерации АТФ. Запас креатинфосфата обеспечивает интенсивную работу мышц в течение 2 - 5 секунд. За это время человек успевает пробежать 15 - 50 метров. Тем временем включаются другие механизмы образования АТФ: мобилизация мышечного гликогена, окисление субстратов, поступающих из печени и жировой ткани.

Концентрация креатина в крови здоровых взрослых людей составляет приблизительно 50 мкмоль/л; в моче он практически отсутствует. Появление креатина в моче не всегда является симптомом заболевания. Так, у маленьких детей и подростков моча всегда содержит креатин (физиологическая креатинурия). При заболеваниях мышц, когда нарушается образование креатинфосфата, увеличивается содержание креатина в крови и возрастает его экскреция с мочой.

25.3.3. В результате неферментативного дефосфорилирования креатинфосфата образуется креатинин - ангидрид креатина.

Креатинин - один из конечных продуктов азотистого обмена в организме, он выводится с мочой. Суточное выделение креатинина у здорового человека пропорционально его мышечной массе. Креатинин не реабсорбируется в почечных канальцах, поэтому его суточная экскреция является показателем фильтрационной функции почек. Содержание креатинина в крови снижается при заболеваниях мышц и увеличивается при нарушении функции почек. Выделение креатинина с мочой снижается в обоих случаях.

Обмен фенилаланина и тирозина.

Обмен фенилаланина и тирозина в тканях человека можно представить в следующем виде (см. рисунок 25.1).

Рисунок 25.1. Пути обмена фенилаланина и тирозина в тканях (цифрами обозначены наиболее часто встречающиеся дефекты ферментов; далее приводится характеристика этих нарушений).

25.4.2. Известен ряд врождённых нарушений обмена фенилаланина и тирозина .

Фенилкетонурия - врождённое нарушение процесса гидроксилирования фенилаланина до тирозина. Заболевание чаще всего вызвано отсутствием или недостатком фермента фенилаланингидроксилазы (обозначен цифрой 1 на рисунке 25.1), реже - нарушением образования тетрагидробиоптерина.

Ранними симптомами фенилкетонурии являются повышенная возбудимость и двигательная активность, рвота и трудности вскармливания, с 3 - 5-го месяца нарушается интеллектуальное развитие, исчезает реакция на окружающее. Со временем у детей появляются судороги. Волосы и глаза обычно менее пигментированы, чем у других членов семьи. При отсутствии лечения продолжительность жизни больных составляет 20 - 30 лет.

Биохимическая основа фенилкетонурии - накопление фенилаланина в организме. Высокая концентрация аминокислоты стимулирует выработку фермента, превращающего фенилаланин вфенилпируват (в норме этот фермент малоактивен). Путём восстановления фенилпируват переходит в фениллактат , а путём декарбоксилирования - в фенилацетат . Эти продукты наряду с фенилаланином в существенных количествах обнаруживаются в моче больных.

В настоящее время имеются достоверные свидетельства того, что за токсическое повреждение мозга ответственны главным образом высокие концентрации фенилаланина. Повышенное содержание фенилаланина тормозит транспорт тирозина и других аминокислот через биологические мембраны. Это приводит к ограничению синтеза белка в клетках мозга и нарушению синтеза нейромедиаторов.

Раннюю диагностику заболевания нельзя провести исходя только из клинической симптоматики. Диагноз ставится биохимически путём скрининга всех новорождённых. Лечение больных фенилкетонурией основано на ограничении поступления фенилаланина в организм и снижения концентрации этой аминокислоты в плазме. С этой целью используются искусственные питательные смеси, в которых фенилаланин отсутствует (например, берлофен).

Алкаптонурия - врожденное нарушение обмена фенилаланина, вызванное отсутствием фермента оксидазы гомогентизиновой кислоты (цифра 2 на рисунке 25.1). Это приводит к нарушению образования малеилацетоацетата, расщепляющегося далее до фумарата и ацетоацетата. В раннем детском возрасте единственным проявлением дефицита фермента является изменение окраски мочи. Гомогентизиновая кислота секретируется в просвет канальцев и в значительном количестве выводится с мочой. На воздухе она окисляется, а затем полимеризуется в окрашенное соединение, которое окрашивает пелёнки в чёрный цвет. Экскреция гомогентизиновой кислоты зависит от содержания фенилаланина и тирозина в пище.

Следствием накопления гомогентизиновой кислоты в организме является охроноз - шиферно-голубой оттенок ушного и носового хрящей, вызванный накоплением в них пигмента. Развитие охроноза можно предотвратить, если с раннего возраста ограничивать поступление с пищей фенилаланина и тирозина.

Альбинизм развивается при отсутствии в пигментных клетках фермента тирозиназы (обозначена цифрой 3 на рисунке 25.1), которая участвует в образовании меланина. В результате волосы, кожа и глаза больного лишены этого пигмента. При альбинизме наблюдается повышение чувствительности к солнечным лучам и некоторое нарушения зрения.