Биомеханические характеристики при изучении движений человека. Шпаргалка: Принципы биомеханики спорта

Зачем нам биомеханика? В мире заблуждений фитнеса и бодибилдинга (а их очень много, и ими руководствуются) необходимо сделать тот самый основательный шаг, который позволит научно доказать работу мышечных групп в различных упражнениях.

В свою очередь, это позволит нам делать правильно упражнения и правильно строить свой тренировочный процесс, чтобы следить за восстановлением мышечных групп и давать адекватную нагрузку, иметь сбалансированную мускулатуру, здоровую осанку. Рисунки будут делаться в паинте от руки с соответствующим качеством.

Для понимания работы мышц, в идеале, необходимы знания функциональной анатомии. Для этого я буду давать информацию об этом, но без картинок. Все, что я буду писать, относительно анатомии, можно найти в книгах по анатомии и проверить подлинность информации. Все анатомические названия бугорков, шероховатостей, отростков, костей и др. можно найти на картинках в интернете.

Разберем некоторые понятия кинематики, динамики, биомеханики.

  1. Поступательное движение - это такое движени тела, при котором все его точки двигаются с одинаковой скоростью и траектории.
    2. Вращательное движение - это движение, при котором различные точки двигаются по окружности, а точки, лежащие на оси вращения остаются неподвижными
    3. Сила - мера механического взаимодействия тел в поступательном движении.
    4. Момент силы - мера механического взаимодействия тел во вращательном движении. Момент силы численно равен произведению силы на ее плече.
    5. Плече силы - кратчайшее расстояние от оси вращения до линии, вдоль которой действует сила.
    6. Масса - мера инертности тела в поступательном движении.
    7. Момент инерции - мера инертности тела во вращательном движении. Его величина определяется произведением массы тела на радиус инерции в квадрате.
    8. Кинематическая пара - это два звена, соединенных между собой подвижно. Примером могут служить две кости, соединенные суставом.
    9. Кинематическая цепь - последовательное или разветвленное соединение кинематических пар. Бывают замкнутые и не замкнутые цепи.
    10. Степень свободы - количество независимых угловых и линейных перемещений тела. Например, локтевой сустав имеет две степени вободы - сгибание и разгибание, супинация и пронация, здесь угловое перемещение тела.
    11. Рычаг - это твердое тело, которое может вращаться под действием приложенных сил (плече и предплечье, сила тяги прилагается через работу бицепса)
    Для простоты понятия представим скелет человека и суставы, в которых вращаются кости. Мышцами в биомеханике будут служить веревочки, которые крепятся к костям и заставляют двигаться кинематические пары, цепи. Мышцы не могут толкать, они только тянут, сокращаясь.

Внешние силы, действующие на кости и мышцы - это отягощения в виде свободных весов и тренажеров, блочных устройств. Внутренние активные силы - это сокращение мышц (преодолевающий, уступающий, изотонический и т.д.). Внутренние пассивные силы - это сила соединительной ткани, сила упругости мышц, фасций, сухожилий, кожи.

Внутренние активные силы затрачивают энергию АТФ, все остальные силы идут без затрат АТФ. Внешние силы в тренажерах и свободных весах работают за счет гравитации, либо посредством гидравлики, давления воздухом, в зависимости от устрайства тренажера. Вес собственного тела тоже считается внешней силой.

Основные режимы работы мышц .

Преодолевающий, динамический, концентрический режим - это такое сокращение, при котором длина мышцы уменьшается. Под основными рабочими мышечными группами в упражнении подразумеваются именно агонисты.
Уступающий, эксцентрический режим - это такое сокращение, при котором длина мышц увеличивается
Изометрический или статический режим - длина мышцы не меняется, но есть напряжение
Изотонический режим - длина мышц меняется, напряжение остается.
Стабилизаторы - мышцы, которые стабилизируют сегменты тела, например лопатку, относительно позвоночника, работая в статическом режиме
Агонисты - мышцы, выполняющие основную роль в движении, сокращая свою длинну
Синергисты - мышцы, помогающие агонистам в основном движении
Антагонисты - мышцы, которые растягиваются, при сокращении агонистов. Агонисты через нервную систему отключают динамическую работу антагонистов, чтобы движение было возможным без помех. Пример: - при сокращении трицепсы на верхнем блоке (разгибание рук у верхнего блока), бицепсы не могут сокращаться в динамическом режиме, они расслабляются и растягиваются.

1 . Биомеханические характеристики как понятие

Наблюдая движения человека, можно заметить, что мно-гие их особенности все время изменяются. Изменяется поло-жение звеньев тела, скорости движения и многое другое. Осо-бенности (или признаки) движения позволяют разделить слож-ное движение на составные части, заметить, как они влияют одна на другую, как помогают достичь цели. Для этого и изу-чают характеристики движений человека.

Характеристики движений человека - это те особен-ности, или признаки, по которым движения различаются меж-ду собой.

Различают качественные и количественные характеристики.

Качественные характеристики - характеристики, описы-ваемые только словами и не имеющие точной количественной меры (например: напряженно, свободно, плавно, мягко и др.).

Количественные характеристики - характеристики, которые измеряют или вычисляют, они имеют количествен-ную меру.

Педагогу при проведении урока нечем и некогда изме-рять и регистрировать количественные характеристики. Ему приходится пользоваться качественными характеристиками, он проводит качественный биомеханический анализ движе-ний каждого ученика.

Изучая движения с помощью измерительной и записыва-ющей аппаратуры, получают количественные характеристи-ки. Их обрабатывают, проводят вычисления для количествен-ного биомеханического анализа. Конечно, затем должен сле-довать и качественный анализ, чтобы понять законы движения и использовать их в физическом воспитании. Хорошо владея навыками количественного анализа, в повседневной практи-ческой работе можно с успехом пользоваться только каче-ственным анализом.

Вся сложность взаимосвязи характеристик, используемых для изучения движений человека, отражена в схеме.

Из нее видно, что наиболее важными являются те из них, которые характеризуют изменения положения тела и движе-ния. К ним относятся кинематические и динамические ха-рактеристики. При этом следует отметить тот факт, что дви-жения человека и предметов, перемещаемых им, можно заме-тить и измерить, только сравнивая их положения с положением выбранного для сравнения тела (тело отсчета) . Поэтому все движения человека в биомеханике рассматриваются как от-носительные.

Движение выражается в изменении с течением времени взаимного положения тел. Его можно наблюдать и отсчиты-вать только относительно других реальных тел (например, при прыжках в длину - относительно бруска) или условных (например, в старте яхт - относительно линии створа) .

В зависимости от условий задачи, стоящей при изучении двигательного действия, выбирается та или иная система от-счета. Принято выделять:

Инерциальную систему отсчета (Земля, дорожка, лыж-ня) - движения их в данной системе незаметны при измере-ниях, т.е. изменениями скорости, ускорениями при решении данной задачи можно пренебречь;

Неинерциальная система отсчета - движущееся тело (скользящая лыжа, раскачивающиеся кольца), движение ко-торого происходит с заметным ускорением, существенно вли-яющим на отсчет расстояния;

Соматическая система отсчета (тело человека) - движе-ние звеньев рассматривается относительно туловища.

2 . Кинематические характеристики

Наблюдая сам факт движений, их внешнюю картину, раз-личают пространственную форму (рисунок, узор) движений и их характер (изменение во времени - быстрее, чаще и т.п.) .

Количественные характеристики, раскрывающие форму и характер движений, называются кинематическими .

Они описывают движения в пространстве и во времени. Соответственно различают характеристики:

Пространственные;

Временные;

Пространственно-временные.

Пространственные характеристики позволяют опре-делить, каково исходное и конечное положения при движении

(координата), какова между ними разница, насколько они из-менились (перемещение) и через какие промежуточные поло-жения выполнялось движение (траектория), т.е. простран-ственные характеристики в целом определяют пространствен-ную форму движений человека.

Координата точки - это пространственная мера мес-тоположения точки относительно системы отсчета.

С точки зрения механики описать движение - это значит определить положение в любой момент времени, определить координаты опознавательных точек тела, по которым изуча-ют ход движения в пространстве.

По координатам определяют, где находится изучаемая точка относительно начала отсчета, измеряя ее линейные ко-ординаты. Положение точки на линии, определяет одна коор-дината, на плоскости - две, в пространстве - три.

Изучая движение нужно определить: 1) начальное поло-жение, из которого движение начинается; 2) конечное поло-жение, в котором движение заканчивается; 3) ряд мгновен-ных промежуточных положений, которые принимает тело при выполнении движения.

Перемещение точки - это пространственная мера из-менения местоположения точки в данной системе отсчета.

Перемещение - величина векторная. Она характеризует-ся численным значением (модулем) и направлением, т.е. оп-ределяет размах и направление движения. Если после движе-ния точка вернулась в исходное положение, перемещение рав-но нулю. Таким образом, перемещение есть не само движение, а лишь его окончательный результат - расстояние по прямой и направление от исходного до конечного положения.

Перемещение (линейное, в поступательном движении) из-меряется разностью координат в моменты начала и оконча-ния движения (см. таблицу 2) .

Перемещение тела при вращательном движении измеря-ется углом поворота - разностью угловых координат в одной и той же системе отсчета расстояний.

Траектория точки - это пространственная мера дви-жения (воображаемый след движения точки) . Траекторию определяют, устанавливая ее длину, кривизну и ориентацию в пространстве.

Пространственный рисунок движения точки дает ее тра-ектория. Длина траектории показывает, каков путь точки.

Путь точки в прямолинейном движении равен расстоя-нию от исходного до конечного положения.

При криволинейном движении путь точки равен ариф-метической сумме модулей ее элементарных перемещений.

Кривизна траектории показывает, какова форма движе-ния в пространстве. Чтобы определить кривизну траектории, измеряют радиус кривизны. Если траектория является дугой окружности, радиус кривизны постоянный. С увеличением кривизны ее радиус уменьшается, и, наоборот, с уменьшением кривизны, радиус увеличивается.

Ориентация траектории в пространстве при одной и той же ее форме может быть разная. Ориентацию определяют для прямолинейной траектории по координатам точек на-чального и конечного положений; для криволинейной траек-тории - по координатам этих двух точек и третьей точки, не лежащей с ними на одной прямой линии.

В совокупности ориентация, длина и кривизна траекто-рии позволяют определить направление, размах и форму дви-жения точки, а также начальное положение, конечное и все промежуточные.

Временные характеристики раскрывают движения во времени: когда оно началось и закончилось (момент времени), как долго длилось (длительность движения), как часто выпол-нялось движение (темп) , как движения были построены во времени (ритм) . Вместе с пространственно-временными харак-теристиками они определяют характер движений человека.

Момент времени - это временная мера положения точ-ки тела и системы, определяемая промежутком времени до него от начала отсчета.

Момент времени определяют не только для начала и окон-чания движения, но и для других важных мгновенных положений. В первую очередь это моменты существенного изме-нения движения: заканчивается одна часть (фаза) движения и начинается следующая (например: отрыв стопы от опоры в беге - это момент окончания фазы отталкивания и начало фазы полета). По моментам времени определяют длитель-ность движения.

Длительность движения - это его временная мера, ко-торая измеряется разностью моментов времени окончания и начала движения.

Длительность движения представляет собой количество времени, прошедшее между двумя ограничивающими его мо-ментами времени. Сами моменты (как границы между двумя смежными промежутками времени) длительности не имеют. Ясно, что измеряя длительность, пользуются одной и той же системой отсчета времени. Узнав путь точки и длительность ее движения, можно определить ее скорость. Зная длитель-ность движений, определяют также их темп и ритм.

Темп движений - это временная мера повторности дви-жений. Он измеряется количеством движений, повторяющихся в единицу времени (частота движений) .

Темп - величина, обратная длительности движений. Чем больше длительность каждого движения, тем меньше темп, и наоборот. В циклических движениях темп может служить показателем совершенства техники.

Ритм движений - это временная мера соотношения час-тей движений. Он определяется по соотношению промежутков времени, затраченного на соответствующие части движения.

Ритм определяют как соотношение двух периодов времени (например: опоры и полета в беге) или длительности двух фаз периода (например: фазы амортизации и фазы отталкивания в опорном периоде) . Можно говорить и о ритме ряда фаз (напри-мер: соотношение длительностей пяти фаз скользящего шага в лыжном ходе) . Ритм бывает постоянным и переменным.

Пространственно-временные характеристики определя-ют, как изменяются положения и движения человека во времени.

Скорость точки - это пространственно-временная мера движения. Она определяет быстроту изменения положения точки в пространстве с изменением времени.

В поступательном движении скорость измеряется отно-шением пройденного пути (с учетом его направления) к затра-ченному времени; во вращательном движении - отношением угла поворота ко времени, за которое произошло вращение.

Ускорение точки - это пространственно-временная мера изменения движения, которая характеризует быстро-ту изменения скорости по величине и направлению.

Ускорение измеряется отношением изменения скорости (угловой скорости) к затраченному на него времени.

Различают ускорения точки: а) положительное, имеющее одинаковое направление со скоростью, - скорость возрастает; б) отрицательное, имеющее направление, противоположное направлению скорости, - скорость убывает; в) нормальная -скорость прежняя, изменяется направление.

3 . Динамические характеристики

Все движения человека и движимых им тел под действи-ем сил изменяются по величине и направлению скорости. Чтобы раскрыть механизм движений (причины их возник-новения и ход их изменения), исследуют динамические харак-теристики. К ним относятся инерционные характеристики (особенности самих движущихся тел) , силовые (особенности взаимодействия тел) и энергетические (состояния и измене-ния работоспособности, биомеханических систем) .

Инерционные характеристики раскрывают, каковы особенности тела человека и движимых им тел в их взаимо-действиях. От инерционных характеристик зависит сохране-ние и изменение скорости.

Все физические тела обладают свойством инертности (или инерции), которое проявляется в сохранении движения, а так-же в особенностях изменения его под действием сил.

Понятие инерции раскрывается в первом законе Ньюто-на: "Всякое тело сохраняет свое состояние покоя или равно-мерного и прямолинейного движения до тех пор, пока внешние приложенные силы не заставят его изменить это состояние".

Говоря проще: тело сохраняет свою скорость, а также под действием внешних сил изменяет ее.

Масса - это мера инертности тела при поступатель-ном движении. Она измеряется отношением величины при-ложенной силы к вызываемому ею ускорению.

Масса тела характеризует, как именно приложенная сила может изменить движение тела. Одна и та же сила вызовет большее ускорение у тела с меньшей массой, чем у тела с боль-шей массой.

Момент инерции - это мера инертности тела при вращательном движении. Момент инерции тела относитель-но оси равен сумме произведений масс веек его частиц на квадраты их расстояний от данной оси вращения.

Отсюда видно, что момент инерции тела больше, когда его частицы дальше от оси вращения, а значит угловое ускорение тела под действием того же момента силы меньше; если части-цы ближе к оси, то угловое ускорение больше, а момент инерции меньше. Значит, если приблизить тело к оси, то легче вызвать угловое ускорение, легче разогнать тело во вращении, легче и остановить его. Этим пользуются при движении вокруг оси.

Силовые характеристики. Известно, что движение тела мо-жет происходить как под действием приложенной к нему движу-щей силы, так и без движущей силы (по инерции), когда приложе-на только тормозящая сила. Движущие силы приложены не все-гда; без тормозящих же сил движения не бывает. Изменение движений происходит под действием сил. Сила не причина дви-жения, а причина изменения движения; силовые характеристики раскрывают связь действия силы с изменением движения.

Сила - это мера механического воздействия одного тела на другое в данный момент времени. Численно она определя-ется произведением массы тела и его ускорения, вызванного данной силой.

Чаще всего говорят про силу и результат ее действия, но это применимо только к простейшему поступательному дви-жению тела. В движениях человека как системы тел, где все движения частей тела вращательные, изменение вращатель-ного движения зависит не от силы, а от момента силы.

Момент силы - это мера вращающего действия силы на тело. Он определяется произведением силы на ее плечо.

Момент силы обычно считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицатель-ным при повороте по часовой стрелке.

Чтобы сила могла проявить свое вращающее действие, она должна иметь плечо. Иначе говоря, она не должна прохо-дить через ось вращения.

Определение силы или момента силы, если известна мас-са или момент инерции, позволяет узнать только ускорение, т.е. как быстро изменяется скорость. Надо еще узнать, на-сколько именно изменится скорость. Для этого должно быть известно, как долго была приложена сила. Иначе говоря, сле-дует определить импульс силы (или ее момента) .

Импульс силы - это мера воздействия силы на тело за данный промежуток времени (в поступательном движе-нии) . Он равен произведению силы и продолжительности ее действия.

Любая сила, приложенная даже в малые доли секунды (например: удар по мячу) , имеет импульс. Именно импульс силы определяет изменение скорости, силой же обусловлено только ускорение.

Во вращательном движении момент силы, действуя в те-чение определенного времени, создает импульс момента силы.

Импульс момента силы - это мера воздействия мо-мента силы относительно данной оси за данный промежу-ток времени (во вращательном движении) .

Вследствие импульса как силы, так и момента силы воз-никают изменения движения, зависящие от инерционных свойств тела и проявляющиеся в изменении скорости (коли-чество движения, кинетический момент) .

Количество движения - это мера поступательного дви-жения тела, характеризующая его способность передавать-ся другому телу в виде механического движения. Количество движения тела измеряется произведением массы тела на его скорость.

Кинетический момент (момент количества движе-ния) - это мера вращательного движения тела, характери-зующая его способность передаваться другому телу в виде механического движения. Кинетический момент равен про-изведению момента инерции относительно оси вращения на угловую скорость тела.

Соответствующее изменение количества движения происхо-дит под действием импульса силы, а под действием импульса момента силы происходит определенное изменение кинетическо-го момента (момента количества движения) .

Таким образом, к ранее рассмотренным кинематическим мерам изменения движения (скорости и ускорению) добавляют-ся динамические меры изменения движения (количество движе-ния и кинетический момент) . Совместно с мерами действия сил они отражают взаимосвязь сил и движения. Изучение их помога-ет понять физические основы двигательных действий человека.

Энергетические характеристики. При движениях че-ловека силы, приложенные к его телу на некотором пути, со-вершают работу и изменяют положение и скорость звеньев тела, что изменяет его энергию. Работа характеризует процесс, при котором меняется энергия системы. Энергия же ха-рактеризует состояние системы, изменяющейся вследствие работы. Энергетические характеристики показывают, как ме-няются виды энергии при движениях и протекает сам про-цесс изменения энергии.

Работа силы - это мера действия силы на тело при некотором его перемещении под действием этой силы. Она равна произведению модуля силы и перемещения точки при-ложения силы.

Если сила направлена в сторону движения (или под ост-рым углом к этому направлению) , то она совершает положи-тельную работу, увеличивая энергию движения тела. Когда же сила направлена навстречу движению (или под тупым углом к его направлению) , то работа силы отрицательная и энергия движения тела уменьшается.

Работа момента силы - это мера воздействия момента силы на тело на данном пути (во вращательном движении) . Она равна произведению модуля момента силы и угла поворота.

Понятие работы представляет собой меру внешних воз-действий, приложенных к телу на определенном пути, вызы-вающих изменения механического состояния тела.

Энергия - это запас работоспособности системы. Ме-ханическая энергия определяется скоростями движений тел в системе и их взаимным расположением; значит, это энер-гия перемещения и взаимодействия.

Кинетическая энергия тела - это энергия его механи-ческого движения, определяющая возможность совершить работу. При поступательном движении она измеряется по-ловиной произведения массы тела на квадрат его скорости, при вращательном движении половиной произведения момен-та инерции на квадрат его угловой скорости.

Потенциальная энергия тела -это энергия его поло-жения, обусловленная взаимным относительным расположе-нием тел или частей одного и того же тела и характером их взаимодействия. Потенциальная энергия в поле сил тя-жести определяется произведением силы тяжести на раз-ность уровней начального и конечного положения над землей (относительно которого определяется энергия) .

Энергия как мера движения материи переходит из одно-го вида в другой. Так, химическая энергия в мышцах превра-щается в механическую (внутреннюю потенциальную упруго-деформированных мышц). Порожденная последней сила тяги мышц совершает работу и преобразует потенциальную энер-гию в кинетическую энергию движущихся звеньев тела и вне-шних тел. Механическая энергия внешних тел (кинетичес-кая) , передаваясь при их действии на тело человека его звень-ям, преобразуется в потенциальную энергию растягиваемых мышц-антаганистов и в рассеивающуюся тепловую энергию.

4 . Распределение масс частей тела

От распределения масс частей тела зависят многие сопро-тивления, которые встречают силы, действующие на тело. Эти сопротивления определяются силами тяжести и моментами инерции частей тела.

Наиболее общим показателем распределения масс в теле служит общий центр тяжести тела (ОЦТ) . Как известно, центром тяжести называется точка тела, к которой как бы приложена равнодействующая всех сил тяжести тела . Во все стороны от этой точки, по любому направлению, моменты сил тяжести взаимно уравновешиваются. Равнодействующая параллельных сил, действующих на все частицы тела в любом направлении, приложена к ОЦТ; поэтому в этом случае ОЦТ называют еще центром массы, или центром инерции.

Расположение ОЦТ необходимо знать при изучении ста-тики для оценки условий равновесия тела. Путь движения -траектория ОЦТ - во многих случаях дает ценные сведения об особенностях движения тела, так как отражает действие внешних сил на тело. ОЦТ не может перемещаться иначе как под действием внешних сил. Одни внутренние силы никогда не могут изменить положение и путь ОЦТ в пространстве.

Общий центр тяжести тела располагается в зависимости от телосложения человека. У людей с более развитыми нога-ми ОЦТ относительно ниже, чем у людей с более мощной мускулатурой туловища и рук. У длинноногих людей ОЦТ анатомически расположен ниже, но он дальше от земли, чем у коротконогих.

В симметричных положениях человека, стоящего с опу-щенными руками, ОЦТ находится на уровне от первого до пятого крестцового позвонка (по Иваницкому) , примерно на 4-5 см выше поперечной оси тазобедренных суставов. Пере-днезадняя плоскость, проходящая через ОЦТ, делит тело по-чти симметрично. Она несколько смещена вправо от средин-ной плоскости, так как правая половина тела человека тяжелее левой на 400-500 г, в связи с несимметричным располо-жением внутренних органов и неравномерным развитием двигательного аппарата. У правшей правая половина тела развита лучше и имеет большую массу. В переднезаднем на-правлении ОЦТ располагается между крестцом и лобком в зависимости от положения тела при стоянии.

Само собой разумеется, что с изменением формы тела, вслед-ствие иного расположения его частей, изменяет свое положе-ние и ОЦТ. При перемещении какой-либо части тела и ОЦТ смешается в том же направлении. Если переметающаяся часть тела имеет большую массу, то и смещение ОЦТ больше.

Массы частей тела определяли путем распила заморо-женных трупов, а также путем измерения объема частей тела и уравновешивания живых людей в различных позах. Сред-ние данные, полученные этими различными методами, оказа-лись близкими друг к другу. Так, если вес тела человека при-нять за 100%, то вес головы составит 7%; туловища - 43%; бедра - 12%; голени - 5%; стопы - 2%; плеча - 3%; пред-плечья - 2% и кисти 1%.

Если средние данные более или менее близки, то данные отдельных людей могут значительно отличаться от этих сред-них в зависимости от телосложения.

Массы отдельных частей тела не остаются постоянными. В связи с тренировкой здесь могут происходить немалые из-менения. У спортсменов меньше отложения жира на тулови-ще и лучше развиты мышцы конечностей. Поэтому у них соотношение масс может быть иное, чем у людей, не занимаю-щихся спортом.

Массы тела могут также изменяться и в течение корот-ких промежутков времени. Например, прием пищи и воды может увеличить массу туловища; после разминки или со-ревнований прилив крови в расширенные сосуды мышц мо-жет увеличить массу конечностей.

Таким образом, относительные массы частей тела человека в конкретных случаях могут намного отличаться от точно вы-численных средних данных. Поэтому нет необходимости в очень большой точности при расчетах, производимых с практической целью. Вполне достаточно эти величины в процентах округ-лить, так как индивидуальные отклонения от них могут быть намного больше, чем на сотые и десятые доли процента.

Для положения ОЦТ имеет значение не только масса ча-стей тела, но и ее распределение в каждой части тела. Показателями этого служат центры тяжести частей тела. Центры тяжести длинных частей тела лежат приблизительно на их продольной оси, ближе к проксимальному сочленению. Так, расстояние от проксимального сочленения до центра тяжес-ти (радиус центра тяжести) составляет для бедра 0,44 его дли-ны, для голени 0,42, для плеча 0,47 и для предплечья 0,42. Такое распределение масс обусловлено большой массой мышц, окружающих проксимальные сочленения, особенно для бедра, голени и предплечья. Предплечья и голени имеют мышцы с отчетливо выраженным брюшком и тонким сухожилием. А на бедре в области тазобедренного сустава есть большие мас-сы коротких мышц - ягодичные, приводящие, запирательные и др. Этими особенностями и определяется неравномерное распределение масс в этих частях тела.

Строго говоря, при изменении напряжения мышц и их кро-венаполнения распределение масс в конечностях также несколь-ко изменяется. Но значительно больше оно изменяется у туло-вища, способного очень сильно изменять свою форму.

Принято считать, что центр тяжести туловища распола-гается на линии, соединяющей середины поперечных осей, про-веденных через центры плечевых и тазобедренных суставов. Эту линию центр тяжести туловища делит на отрезки, отно-сящиеся друг к другу как 4: 5, считая от головного конца. По сути дела, туловище - не отдельное звено, а система звеньев, обладающая большой подвижностью. Кроме того, надо учи-тывать изменение распределения масс туловища при вдохе, когда внутренние органы брюшной полости оттесняются вниз, а грудная клетка, наполненная воздухом, имеет меньший удельный вес. При некоторых положениях отдельные органы брюшной полости могут смещаться на значительное расстоя-ние (до 20 см) (Джафаров) .

Значит, при всех расчетах положения ОЦТ имеются очень большие погрешности, связанные с тем, что подвижно соеди-ненные части тела и части тела, в которых изменяется рас-пределение масс, принимаются за неизменяемые тела. Лишь у головы расположение центра тяжести сзади турецкого сед-ла клиновидной кости довольно постоянно, но и оно может измениться при движениях нижней челюсти.

Расположение ОЦТ обусловлено половыми и возрастны-ми особенностями. У детей, имеющих большую массу тулови-ща и головы, ОЦТ располагается выше, чем у взрослых. У женщин, в связи с присущей им пропорцией тела, в частности с более массивным тазовым поясом, ОЦТ располагается ниже, чем у мужчин.

Для определения действия сил окружающей среды при изучении движений человека в водной среде, а также в полете в воздухе с большой скоростью необходимо знать расположе-ние центра объема (ЦО) и центра поверхности (ЦП) .

Центр объема тела расположен в точке пересечения плос-костей, делящих тело на две равные по объему половины. С погружением в воду на тело действуют силы давления воды. Точка приложения равнодействующей всех сил давления воды на поверхность тела и называется центром объема тела. ЦО можно рассматривать так же, как ОЦТ объема воды, вытес-ненной погружением тела человека в воду и имеющей форму погруженных частей тела.

В то же время на тело действуют силы тяжести, равно-действующая которых приложена к ОЦТ. Когда ЦО и ОЦТ расположены на одной вертикали, тогда, в зависимости от со-отношения величин сил тяжести и давления воды, тело либо всплывает, либо тонет, либо остается неподвижным в воде. Если ЦО и ОЦТ находятся не на одной вертикали, то еще возникает пара сил, вызывающих вращение тела.

У человека ЦО расположен несколько выше его ОЦТ. Это объясняется тем, что содержащийся в грудной клетке воз-дух делает верхнюю половину тела более легкой, поэтому ОЦТ смещен несколько в сторону ног. В связи с этим человек при покойном положении на воде во время вдоха начинает пово-рачиваться, опускаясь ногами вниз. Если руки сместить в сто-рону головы, то можно совместить ЦО и линию тяжести; тог-да тело уравновесится.

По данным Иваницкого, ЦО расположен выше ОЦТ на 2-6 см, в зависимости от особенностей телосложения. Есте-ственно, что с изменением позы тела изменяется и располо-жение ЦО.

Во время движения человека со значительной скоростью через воздушную среду силы сопротивления воздушной среды зависят от площади лобовой поверхности тела. Равнодейству-ющая всех сил сопротивления среды приложена к центру по-верхности. Граница поверхности сопротивления определяется по проекции границы тела на плоскость, перпендикулярную направлению движения тела относительно среды.

У тела человека, стоящего в выпрямленном положении, ЦП тела при движении в переднезаднем направлении распо-лагается выше ОЦТ.

В безопорном положении при движении в воздухе, на-пример при прыжках на лыжах с трамплина, изменение позы вызывает изменения и лобовой поверхности тела (вместе с лыжами) , а следовательно, и ЦП. Когда ЦП ниже ОЦТ, лыж-ник вращается головой вперед. Если ЦП оказывается выше ОЦТ, то тело получает вращение головой назад. При располо-жении ОЦТ и ЦП на одной линии, параллельной направле-нию полета, вращения не возникает.

Контрольные вопросы

1. Для чего определяются характеристики движений че-ловека?

2. В чем различие кинематических и двигательных ха-рактеристик?

3. Зачем нужно выбирать систему отсчета и как ею пользо-ваться?

4. Дайте определение основных пространственных и вре-менных характеристик движений, скорости и ускорения то-чек тела и звеньев тела.

5. Что является мерой инертности тела при поступатель-ном и вращательном движении?

6. Что является причиной изменения движения? Какие характеристики относятся к силовым?

7. Раскройте энергетические характеристики.


В.Л.Уткин "Биомеханика физических упражнений"

БИОМЕХАНИКА ХОДЬБЫ И БЕГА

Ходить и бегать для здоровья!

Ходьба и бег относятся к самым древним способам передвижения.

За 70 лет жизни человек совершает в среднем 500 миллионов шагов и преодолевает путь, приблизительно равный расстоянию от Земли до Луны (384 тыс. км.).

Мы привыкли, что идти пешком — это значит идти медленно. Но в наш век больших скоростей и ходьба стала стремительной. Победитель Кубка мира в спортивной ходьбе в 1983 г. прошел 20 км со средней скоростью 15,9 км/ч.

Результаты в беге также не стоят на месте. Мужчины в 100-метровом спринте перешагнули десятисекундный барьер, а женщины освоили марафон.

Будучи «фундаментальными человеческими движениями», ходьба и бег интересны сами по себе. Но, кроме того, ввиду своей общедоступности они используются для изучения общих закономерностей циклических локомоций.

Рис. 69. Скорость как произведение длины и частоты шагов; пунктир — изоспида
(все точки изоспиды соответствуют одной и той же скорости)

Рис. 70. Простейшие хронограммы обычной ходьбы, спортивной ходьбы, бега трусцой и спринтерского бега;
периоды опоры заштрихованы; вверху — левая нога, внизу — правая (по В. Е. Панфилову, Nigg, Denoth, M. А. Каймин, В. В. Тюпе)

КИНЕМАТИКА ХОДЬБЫ И БЕГА.
ТОПОГРАФИЯ РАБОТАЮЩИХ МЫШЦ

Как и во всех циклических локомоциях, при ходьбе и беге скорость передвижения прямо пропорциональна длине шага и темпу (рис. 69):

где v — скорость передвижения (м/с); l — длина шага (м); п — частота шагов (1/мин). Чтобы определить темп ходьбы или бега, обычно регистрируют число шагов в минуту, или частоту шагов ( Так же поступают и в конькобежном спорте. Но в плавании, гребле и велоспорте определяют темп как число циклов в минуту, а длиной шага считают расстояние, преодолеваемое за один цикл. В велоспорте это расстояние называется укладкой ) .

Одна и та же скорость может быть достигнута при разных сочетаниях длины и частоты шагов. Кривая, все точки которой соответствуют одной и той же скорости, называется изоспидой. На рис. 69 изображены две изоспиды. Видно, что увеличить скорость можно тремя способами: повысив длину шага, подняв темп и увеличив одновременно и длину, и частоту шагов.

Для того чтобы понять, как человек ходит или бегает, прежде всего нужно изучить фазовый состав этих локомоций. На рис. 70 представлены простейшие хронограммы ходьбы и бега. Из них видно, что по мере увеличения скорости передвижения:

при ходьбе сокращается период двойной опоры (когда обе ноги находятся на земле) вплоть до почти полного его исчезновения при спортивной ходьбе;

при беге увеличивается отношение длительности периода полета (когда обе ноги не касаются опоры) к длительности периода опоры.

Вопросы для самоконтроля знаний

1) Как можно отличить ходьбу от бега?

2) Почему на соревнованиях по спортивной ходьбе спортсмена снимают с дистанции, если в хронограмме его действий появляется период полета?

Сведения о скорости, темпе, длине шага, длительностях опоры, переноса ноги и полета необходимы для совершенствования тактики ходьбы и бега и дают самое общее представление о технике. Но их недостаточно, чтобы ответить на два очень важных вопроса:

1) Как организовано двигательное действие ?

2) Как им овладеть?

Для ответа на эти вопросы прежде всего нужны более подробные хронограммы.

На рис. 71 показано, что каждый полуцикл обычной ходьбы состоит из пяти фаз (римские цифры). Фазы отделены друг от друга пятью граничными позами (арабские цифры). Шагающий человек на рисунке изображен в граничных позах. Назовем эти позы и фазы между ними для одного полуцикла:

1 — отрыв стопы правой ноги от опоры;

I — подседание на левой (опорной) ноге, ее сгибание в коленном суставе;

2 — начало разгибания левой ноги;

II — выпрямление левой ноги, ее разгибание в коленном суставе;

3 — момент, когда правая нога в процессе переноса начала опережать левую;

III — вынос правой ноги с опорой на всю стопу левой ноги;

4 — отрыв пятки левой ноги от опоры;

IV — вынос правой ноги с опорой на носок левой ноги;

5 — постановка правой ноги на опору;

V — двойная опора, переход опоры с левой ноги на правую.

Во втором полуцикле фазы и граничные позы те же, только в их названиях правую ногу нужно заменить левой, а левую — правой.

Рис. 71. Фазы ходьбы, граничные позы и элементарные действия

Рис. 72. Мышцы туловища и ног, на которые приходится основная нагрузка при ходьбе (по В. С. Гурфинкелю):

1 прямая м. живота; 2 — четырехглавая м. бедра; 3 — передняя большеберцовая м.;4 —длинная малоберцовая м.; 5 — трехглавая м. голени; 6 — полусухожильная м.; 7 — двуглавая м. бедра; 8 — большая ягодичная м.; 9 — напрягатель широкой фасции; 10 — средняя ягодичная м.; 11 — м., выпрямляющаяпозвоночник; цифры в кружках — номера граничных поз в соответствии с рис. 71

Рис. 73. Фазы и граничные позы бега
(по Д. Д. Донскому, переработано)

Когда говорят о фазовом составе двигательного действия, имеют в виду движения всего тела (в данном случае обеих ног). Но для понимания механизмов ходьбы нужно знать, какие элементарные действия выполняются каждой ногой. По времени они не всегда совпадают с фазами ходьбы (см. рис. 71). В периоде опоры выполняются: амортизация, перекат с пятки на всю ступню, отталкивание и перекат со всей ступни на носок. В периоде переноса ногасначала сгибается, а затем разгибается в коленном суставе. Из элементарных действий формируются фазы.

Топография мышц, работающих при ходьбе, показана на рис. 72.

Фазовый состав бега показан на рис. 73. Каждая половина цикла состоит из четырех фаз (римские цифры), отделенных друг от друга граничными позами (арабские цифры). В том числе:

1 — отрыв левой стопы от опоры;

I — разведение стоп;

2 — начало выноса левой ноги вперед;

II — сведение стоп с выносом левой ноги вперед;

3 — постановка правой стопы на опору;

III — амортизация, или подседание со сгибанием правой (опорной) ноги;

4 — начало разгибания правой ноги;

IV — отталкивание с выпрямлением правой ноги до отрыва от опоры.

Вторая половина цикла симметрична первой. В названиях фаз и граничных поз правая нога заменяется левой и наоборот.

Топография работающих мышц у бегуна ясна из рис. 41. Из сравнения рис. 41 и 72 видно, что нагрузка при беге ложится в основном на те же мышцы, что и при ходьбе. Однако неодинакова межмышечная координация (последовательность включения и выключения мышц). И кроме того, степень напряжения мышц при беге существенно больше.

ДИНАМИКА ХОДЬБЫ И БЕГА

Человек является самодвижущейся системой, поскольку первопричиной его движений служат внутренние силы, создаваемые мышцами и приложенные к подвижным звеньям тела. К внутренним относятся и силы инерции, приложенные к центрам масс разгоняемых и тормозимых звеньев тела («фиктивные» силы инерции) или к другим звеньям тела либо к внешним предметам («реальные» силы инерции) (рис. 74).

Сила инерции (F ин) равна произведению массы всего тела или отдельного звена на его ускорение и направлена в сторону, противоположную ускорению. Поэтому сила инерции замедляет и разгон, и торможение.

Наряду с внутренними на человека действуют внешние силы. При ходьбе и беге к ним относятся: сила тяжести, сила реакции опоры, сила сопротивления воздуха (см. рис. 74).

Рис . 74. Силы, действующие на человека во время ходьбы и бега: G — сила тяжести, F ин — сила инерции, Р — вес тела, R ст иR дин — статический идинамический компоненты реакции опоры, F B — сила сопротивления воздуха; обратите внимание: 1) F — сила действия ноги на опору (как и сила реакции опоры) содержит двесоставляющие: вертикальную и горизонтальную; 2) если линия действия опорной реакции не проходит через общий центр масс тела, то возникает опрокидывающий момент (показано круговой стрелкой)

Сила тяжести (гравитационная сила) приложена к центру масс и равна произведению массы тела на ускорение земного тяготения:

Например,при массе тела 50 кг сила тяжести близка к 500 Н.

Сила лобового сопротивления воздуха приложена к центру поверхности тела. Она увеличивается пропорционально квадрату скорости. Например, при скорости 9 м/с сила лобового сопротивления воздуха в 4 раза больше, чем при скорости 4,5 м/с, и в 9 раз больше, чем при скорости 3 м/с. Расчеты показывают, что при скорости бега 8 м/с ее величина достигает 20 Н.

Сила реакции опоры не является движущей силой. Но ее измеряют и изображают графически (см. рис. 74), для того чтобы определить результат совместного действия всех сил (и внутренних, и внешних). Как же формируется опорная реакция?

Отталкиваясь от опоры, человек воздействует на нее с силой отталкивания, которая состоит из двух компонентов: статического — веса (постоянного и равного силе тяжести) и динамического компонента. Динамический компонент может иметь место только при движениях, выполняемых с ускорением, когда все тело или отдельные звенья разгоняются или тормозятся. Наиболее отчетливо это видно на динамограммах подтягивания, приседания и т. п. (см. в главе 12).

Объясните, почему у вертикально стоящего человека вес равен силе тяжести, а у человека в позе, изображенной на рис. 74, вертикальная составляющая веса меньше силы тяжести и, кроме того, появляется горизонтальная составляющая веса.

Динамограммы ходьбы и бега имеют более сложную форму (рис. 75), чем, например, динамограмма приседания. Это объясняется тем, что динамический компонент силы действия ноги на опору зависит от разнонаправленных сил инерции многих сегментов тела. Каждая из них приложена к центру масс ускоряемого или тормозимого сегмента, но передается через опорную ногу на опору. Эти силы инерции возникают при движениях, сопровождающих ходьбу и бег, в том числе:

1) при маховых движениях; например, при отталкивании правой ногой маховое движение левой ноги увеличивает силу действия правой ноги на опору. Впечатляют следующие цифры: при спринтерском беге вклад маховых движений обеих рук в опорную реакцию достигает 20%, а вклад маховой ноги к середине периода опоры — 50%;

2) при сгибании или разгибании опорной ноги; например, в начале фазы амортизации сгибание опорной ноги бегуна приводит к возникновению силы инерции, уменьшающей силу действия на опору.

В конечном итоге силы действия ног на опору отображают всю совокупность внутренних и внешних сил, действующих на тело человека. То же можно сказать и о силе реакции опоры, которая равна по величине силе действия на опору, но противоположно направлена. Как видно из рис. 74, сила действия на опору (а также и реакция опоры) имеет две составляющие: вертикальную и горизонтальную. Их величины изменяются во времени, о чем судят по динамограмме ходьбы или бега (рис. 75).

Горизонтальная составляющая динамограммы бега и ходьбы состоит из двух полуволн: отрицательной и положительной. Отрицательная полуволна соответствует начальной фазе периода опоры, когда происходит неизбежное торможение. Ее следует по возможности уменьшать, для чего непосредственно перед постановкой ноги на опору надо делать активное «загребающее» движение.

Рис. 75. Вертикальная (сплошная линия) и горизонтальная (пунктир) составляющие силы действия на опору в обычной ходьбе и спринтерском беге
(по М. А. Каймин, В. В. Тюпе)

Рис. 76. Динамограмма бега трусцой по жесткому (сплошная линия) и мягкому (пунктир) покрытию
(по Nigg, Denoth)

В результате раньше начинается вторая, положительная полуволна динамограммы, показывающая, как изменяется во времени сила, продвигающая тело бегуна или ходока вперед. Ее величина у высококвалифицированных бегунов достигает 500—600 Н.

Значительно больше амплитуда вертикальной составляющей динамограммы. При беге она достигает у мастеров спорта 2800 Н, а у новичков 1300 Н. При ходьбе амплитуда вертикальной составляющей всреднем достигает 1000 Н.

На величину силы действия на опору влияют свойства дорожки и материал, из которого изготовлена обувь. Разница в величине вертикальной составляющей опорной реакции при ходьбе в обуви с жесткой кожаной подошвой и подошвой из микропористой резины достигает 350 Н.

Мягкое покрытие дорожки и обувь с амортизаторами делают технику ходьбы и бега более соответствующей критерию комфортабельности (рис. 76). Тем самым уменьшается давление на суставы и межпозвоночные диски. Эти перегрузки вреднее, чем принято думать. И не случайно те, кто бегает трусцой по асфальту и в жесткой обуви, часто жалуются на боли в пояснице и суставах.

ЭНЕРГЕТИКА ХОДЬБЫ И БЕГА

При ходьбе и беге механическая энергия определяется скоростями движения тела и его звеньев и их расположением, т. е. кинетической и потенциальной энергией. При ходьбе и беге человек затрачивает энергию не только на горизонтальные, но и на вертикальные и поперечные перемещения общего центра масс.

В зависимости от фазы цикла величина кинетической и потенциальной энергии тела изменяется. Характер этих изменений в ходьбе и беге принципиально различен. Кинетическая и потенциальная энергия в ходьбе изменяется в противофазе; например, в момент постановки ноги на опору максимум кинетической энергии совпадает с минимумом потенциальной, а в беге — синфазно (например, в высшей точке полета максимум кинетической энергии совпадает с максимумом потенциальной). Следовательно, при ходьбе происходит рекуперация энергии, т. е. ее сохранение путем перехода кинетической энергии в потенциальную энергию гравитации и обратно, а при беге этотвид рекуперации практически отсутствует. Зато при беге значительно более выражен другой вид рекуперации, когда кинетическая энергия переходит в потенциальную энергию сокращающихся мышц, действующих подобно пружине.

Энергозатраты на 1 м пути при ходьбе меньше, чем при беге, но только при низких скоростях передвижения. При высоких скоростях бег, наоборот, экономичнее ходьбы (см. рис. 53). Зона, где более выгоден бег, отделена от зоны, где более выгодна ходьба, граничной скоростью. Граничная скорость определяется числом Фруда (Ф), которое вычисляется по формуле

где g — ускорение земного тяготения (м/с 2); v —скорость передвижения человека (м/с); L o —высота общего центра масс тела в основной стойке (м).

Рис. 77. Энергетическая стоимость метра пути при различных сочетаниях длины и частоты шагов: пунктир — изоспиды; сплошные линии— линии одинаковых величин частоты пульса; стрелками указаны оптимальные по экономичности сочетания длины и частоты шагов

Если число Фруда меньше единицы (Ф<1), то выгоднее ходьба, а при Ф>1 выгоднее бег. Граничная скорость соответствует условию Ф=1 и, следовательно, может быть рассчитана по формуле

Энергетические затраты зависят от многих факторов, в том числе от сочетания длины и частоты шагов. При слишком коротких или чересчур длинных шагах (что соответствует недостаточной или чрезмерной силе отталкивания) энергозатраты на 1 м пути выше, чем при оптимальном сочетании длины и частоты шагов (рис. 77). Например, отклонение длины шага от оптимальной величины на 6% при беге со скоростью 4 м/с увеличивает энергетические затраты, приходящиеся на метр пути в среднем на 1 Дж.

Какой вид передвижения (бег или ходьба) более экономичен и почему?

ОПТИМИЗАЦИЯ ХОДЬБЫ И БЕГА

Для оптимизации ходьбы и бега прежде всего необходимо минимизировать непроизводительные энергозатраты.

Это важно и в том случае, когда критерием оптимальности служит экономичность и когда основной целью является повышение соревновательного результата.

Вопрос для самоконтроля знаний

Какой критерий оптимальности является основным, когда спортсмен стремится максимизировать среднедистанционную скорость?

В процессе оптимизации ходьбы и бега решаются следующие задачи:

1) Выбор оптимальной скорости, длины шага и темпа. Наиболее экономичные величины скорости, длины шага

и темпа изменяются с возрастом (рис. 78). Из рисунка видно, что у детей и пожилых людей уровни оптимальных показателей ниже (за исключением темпа у детей), чем у здоровых людей в возрасте расцвета двигательных возможностей. На их величину оказывает влияние ряд факторов: состояние здоровья, спортивная квалификация, степень тренированности, утомление, качество обуви и т. д.

2) Снижение вертикальных и поперечных колебаний о. ц. м.

Рис. 78. Возрастные изменения оптимальной по экономичности скорости и оптимального сочетания длины и ча стоты шагов при ходьбе (А) и беге (Б); вертикальными отрезками показаны доверительные интервалы, в пределы которых попадает 95% всех случаев

В ходьбе и беге полезной работой является только горизонтальная внешняя работа. Вертикальные и поперечные перемещения тела относятся к непроизводительным движениям. Однако ошибочно думать, что, устранив вертикальные перемещения тела совсем, можно сделать ходьбу и бег более экономичными. Наоборот, при полном отсутствии вертикальных колебаний их энергетическая стоимость возрастает, так как движения становятся скованными и теряется та часть энергии, которая при естественной технике движений рекуперируется. Существует оптимальная величина размаха вертикальных колебаний о. ц. м., при которой энергозатраты при ходьбе и беге минимальны.

Для устранения непроизводительных перемещений тела целесообразно использовать повороты таза (рис. 79). Благодаря поворотам таза не только уменьшаются вертикальные и боковые колебания тела, но также удлиняется шаг и ускоряется постановка стопы на опору.

Задание для самоконтроля знаний

Пройдите по комнате своей обычной походкой. А затем измените походку следующим образом: активно выполняйте подгребающее и отталкивающее движения опорной ногой и в то же время поворачивайте таз так, как показано на рис. 79. Вы заметите, что стук каблука об опору стал значительно меньше — походка сделалась мягче.

Почему так получилось? Как это отразилось на скорости и экономичности ходьбы?

Наряду с оптимальной скоростью, о которой уже рассказывалось, имеет важное значение зона экономичных режимов передвижения (рис. 80). Зоной экономических режимов называется диапазон скоростей от оптимальной (наиболее экономичной) до пороговой, соответствующей уровню анаэробного порога (Анаэробный порог — это интенсивность физической нагрузки, начиная с которой из-за значительного усиления анаэробного метаболизма происходит накопление лактата в крови. Подробное объяснение этого феномена в курсе биохимии ). Уменьшение скорости бега и ходьбы по сравнению с оптимальной нерационально, так как приводит к возрастанию энергетической стоимости метра пути. Бег со скоростью выше пороговой вызывает накопление в организме молочной кислоты и других продуктов метаболизма, а это приводит к сильному утомлению.

Передвижение с наиболее экономичной скоростью используется в качестве поддерживающей физической нагрузки, для больных и ослабленных такая нагрузка является развивающей. Пороговая интенсивность бега в спорте считается оптимальной при формировании основ выносливости.

Рис. 79. Движения таза при ходьбе:
а — увеличение длины шага за счет поворота таза
(по Д. А. Семенову, цит. по Д. Д. Донскому, 1960 г.)

Рис. 80. Границы зоны экономических режимов при ходьбе, беге и передвижении на лыжах (пунктир): о — оптимальная (наиболее экономичная) скорость; — анаэробный порог: 1 — мальчики 5—7 лет; 2 — мальчики 11 — 12 лет; 3 — мужчины 55—65 лет; 4 — юноши 15—

17 лет; 5 — женщины 20—22 лет; 6 — мужчины 20—25 лет; 7 — мальчики 5—7 лет; 8 — женщины 20—22 лет; 9 — мальчики 11 — 12 лет; 10 — нетренированные мужчины 20— 22 лет; 11 —тренированные девушки 15— 16 лет; 12 — тренированные юноши 15— 16 лет; 13 — тренированные мужчины 21—24 лет; 14 — тренированные девушки 15—17 лет; 15 — тренированные юноши 15—17 лет; 16 — тренированные мужчины 18—26 лет; 17 — высокотренированные мужчины 19—24 лет;

18 — мужчины 45—60 лет после инфаркта

миокарда

1. Предмет биомеханики

Движение лежит в основе жизнедеятельности человека. Разнообразные химические и физические процессы в клетках тела, работа сердца и течение крови, дыхание, пищеварение и выделение; перемещение тела в пространстве и частей тела относительно друг друга; сложнейшая нервная деятельность, являющаяся физиологическим механизмом психики, восприятие и анализ внешнего и внутреннего мира – все это различные формы движения материи. Закономерности механического движения изучаются механикой. Предметом механики как науки является изучение изменений пространственного расположения тел и тех причин, или сил, которые вызывают эти изменения. Биомеханика – наука о законах механического движения в живых системах. Она изучает движения с точки зрения законов механики, свойственных всем без исключения механическим движениям материальных тел. Объект познания биомеханики – двигательные действия человека как системы взаимно связанных активных движений и положений его тела. Область изучения биомеханики – механические и биологические причины возникновения движений, особенности их выполнения в различных условиях. Общая задача изучения движений состоит в оценке эффективности приложения сил для достижения поставленной цели.

2. Задачи биомеханики спорта

Общая задача изучения движений человека в биомеханике спорта – оценка эффективности приложения сил для более совершенного достижения поставленной цели.

Изучение движений в биомеханике спорта в конечном счете направлено на то, чтобы найти совершенные способы двигательных действий и научить лучше их исполнять. Поэтому оно имеет ярко выраженную педагогическую направленность.

Частные задачи биомеханики спорта состоят в изучении следующих основных вопросов:

а) строение, свойства и двигательные функции тела спортсмена;

б) рациональная спортивная техника и

в) техническое совершенствование спортсмена.

Поскольку особенности движений зависят от объекта движений – тела человека, в биомеханике спорта изучают (с точки зрения биомеханики) строение опорно-двигательного аппарата, его механические свойства и функции (включая показатели двигательных качеств) с учетом возрастных и половых особенностей, влияния уровня тренированности и т.п. Короче говоря, первая группа задач – изучение самих спортсменов, их особенностей и возможностей.

Чтобы эффективно выступать на соревнованиях, спортсмен должен владеть наиболее рациональной для него техникой. От того, из каких движений и как построены двигательные действия, зависит их совершенство. Поэтому в биомеханике спорта детально исследуют особенности различных групп движений и возможности их совершенствования. Изучают ныне существующую спортивную технику, а также разрабатывают новую, более рациональную.

Данные об изменениях спортивной техники в процессе тренировки позволяют разрабатывать основу методики технического совершенствования спортсмена. Исходя из особенностей рациональной техники, определяют рациональные пути ее построения, средства и методы повышения спортивно-технического мастерства.

Таким образом, биомеханическое обоснование технической подготовки спортсменов подразумевает: определение особенностей и уровня подготовленности тренирующихся, планирование рациональной спортивной техники, подбор вспомогательных упражнений и «создание тренажеров для специальной физической и технической подготовки, оценку применяемых методов тренировки и контроль за их эффективностью.

3. Временные характеристики

Временные характеристики раскрывают движение во времени: когда оно началось и закончилось (момент времени), как долго длилось (длительность движения), как часто выполнялось движение (темп), как они были построены во времени (ритм). Вместе с пространственно-временными характеристиками они определяют характер движений человека.

Момент времени – это временная мера положения точки тела и системы. Момент времени (t) определяют промежутком времени до него от начала отсчета: [t] = Т.

Момент времени определяют не только для начала и окончания движения, но и для других важных мгновенных положений. В первую очередь это моменты существенного изменения движения: заканчивается одна часть (фаза) движения и начинается следующая (например, отрыв стопы от опоры в беге – это момент окончания фазы отталкивания и начала фазы полета). По моментам времени определяют длительность движения.

Длительность движения – это его временная мера, которая измеряется разностью моментов времени окончания и начала движения.

Темп движений – это временная мера их повторности. Он измеряется количеством движений, повторяющихся в единицу времени (частота движений):

Темп – величина, обратная длительности движений. Чем больше длительность каждого движения, тем меньше темп, и наоборот. В повторяющихся (циклических) движениях темп может служить показателем совершенства техники.

Ритм движений (временной) – это временная мера соотношения частей движений. Он определяется по соотношению длительности частей движения:

Ритм движений характеризует, например, отношение времени опоры к времени полета в беге или времени амортизации (сгибания колена) к времени отталкивания (выпрямления ноги) при опоре.

4. Пространственно-временные характеристики движения

По пространственно-временным характеристикам определяют, как изменяются положения и движения человека во времени, как быстро человек изменяет свои положения (скорость) и движения (ускорение).

Скорость точки – это пространственно-временная мера движения точки (быстроты изменения ее положения). Скорость равна первой производной по времени от расстояния в рассматриваемой системе отсчета:

Скорость точки определяется по изменению ее координат во времени. Скорость – величина векторная, она характеризует быстроту движения и его направление. Так как скорость движений человека чаще всего не постоянная, а переменная (движение неравномерное и криволинейное), для разбора упражнений определяют мгновенные скорости.

Ускорение точки – это пространственно-временная мера изменения движения точки (быстрота изменения движения – по величине и направлению скорости). Ускорение точки равно первой производной по времени от скорости этой точки в рассматриваемой системе отсчета:

Ускорение точки определяется по изменению ее скорости во времени. Ускорение – величина векторная, характеризующая быстроту изменения скорости по ее величине и направлению в данный момент.

5. Инерционные характеристики

Свойство инертности тел раскрывается в первом законе Ньютона:

«Всякое тело сохраняет свое состояние покоя или равномерного и прямолинейного движения до тех пор, пока внешние приложенные силы, не изменят это состояние».

Иначе говоря, всякое тело сохраняет скорость, пока ее не изменяв силы.

Понятие об инертности:

Любые тела сохраняют скорость неизменной при отсутствии внешних воздействий одинаково. Это свойство, не имеющее меры, и предлагается называть инерцией 1. Разные тела изменяют скорость под действием сил по-разному. Это их свойство, следовательно, имеет меру: его называют инертностью. Именно инертность и представляет интерес, когда надо оценить, как изменяется скорость.

Инертность – свойство физических тел, проявляющееся в постепенном изменении скорости с течением времени под действием сил.

Сохранение скорости неизменной (движение как бы по инерции) в реальных условиях возможно только тогда, когда все внешние силы, приложенные к телу, взаимно уравновешены. В остальных случаях неуравновешенные внешние силы изменяют скорость тела в соответствии с мерой его инертности. Момент инерции тела – это мера инертности тела при вращательном движении. Момент инерции тела относительно оси равен сумме произведений масс всех материальных точек тела на квадраты их расстояний от данной оси

Радиус инерции тела – это сравнительная мера инертности данного тела относительно его разных осей. Он измеряется корнем квадратным из отношения момента инерции (относительно данной оси) к массе тела:

6. Звенья тела как рычаги и маятники

Точки соединения, которые можно рассматривать либо как точки опоры (для рычага), либо как точки отвеса (для маятника).

Рычаг характеризуется расстоянием между точкой приложения силы и точкой вращения. Рычаги бывают первого и второго рода.

Рычаг первого рода или рычаг равновесия состоит только из одного звена. Пример – крепление черепа к позвоночнику.

Рычаг второго рода характеризуется наличием двух звеньев. Условно можно выделить рычаг скорости и рычаг силы в зависимости от того, что преобладает в их действиях. Рычаг скорости дает выигрыш в скорости при совершенствовании работы. Пример – локтевой сустав с грузом на ладони. Рычаг силы дает выигрыш в силе. Пример – стопа на пальцах.

Поскольку тело человека выполняет свои движения в трехмерном пространстве, то его звенья характеризуются степенями свободы, т.е. возможностью совершать поступательные и вращательные движения во всех измерениях. Если звено закреплено в одной точке, то оно способно совершать вращательные движения и мы можем сказать, что оно имеет три степени свободы.

Закрепление звена приводит к образованию связи, т.е. связанному движению закрепленного звена с точкой закрепления. Поскольку руки и ноги человека могут совершать колебательные движения, то к механике их движения применимы те же формулы, что и для простых механических маятников. Основные вывод их них – собственная частота колебаний не зависит от массы качающегося тела, но зависит от его длины (при увеличении длины частота колебаний уменьшается).

Делая частоту шагов при ходьбе или беге или гребков при плавании или гребле резонансной (т.е. близкой к собственной частоте колебаний руки или ноги), удается минимизировать затраты энергии. При наиболее экономичном сочетании частоты и длины шагов или гребков человек демонстрирует существенный рост работоспособности. Простой пример: при беге высокий спортсмен имеет большую длину шага и меньшую частоту шагов, чем более низкорослый спортсмен, при равной с ним скорости передвижения.

7. Механические свойства мышц

Двигательная деятельность человека происходит при помощи мышечной ткани, обладающей сократительными структурами. Работа мышц осуществляется благодаря сокращению (укорачиванию с утолщением) миофибрилл, которые находятся в мышечных клетках. Работа мышц осуществляется посредством их присоединения к скелету при помощи сухожилий.

К биомеханическим свойствам мышц относят сократимость, упругость, жесткость, прочность и релаксацию.

Сократимость – это способность мышцы сокращаться при возбуждении. В результате сокращения происходит укорочение мышцы и возникает сила тяги.

Упругость мышцы состоит в ее способности восстанавливать первоначальную длину после устранения деформирующей силы. Существование упругих свойств объясняется тем, что при растяжении в мышце возникает энергия упругой деформации. При этом мышцу можно сравнить с пружиной: чем сильнее растянута пружина, тем большая энергия в ней запасена. Это явление широко используется в спорте. Например, в хлесте предварительно растягиваются и параллельный, и последовательный упругий компонент мышц, чем накапливается энергия. Запасенная таким образом энергия в финальной части движения (толкания, метания и т.д.) преобразуется в энергию движения (кинетическую энергию).

Аналогия мышцы с пружиной позволяет применить к ее работе закон Гука, согласно которому удлинение пружины нелинейно зависит от величины растягивающей силы. Кривую поведения мышцы в этом случае называют «сила-длина». Зависимость между силой и скоростью мышечного сокращения («сила-скорость») называют кривой Хилла.

Жесткость – это способность противодействовать прикладываемым силам. Коэффициент жесткости определяется как отношение приращения восстанавливающей силы к приращению длины мышцы под действием внешней силы: Кж=DF/Dl (Н/м).

Величина, обратная жесткости, называется податливостью мышцы. Коэффициент податливости: Кп=Dl /DF (м/Н) – показывает, насколько удлинится мышца при изменении внешней силы. Например, податливость сгибателя предплечья близка к 1 мм/Н.

Прочность мышцы оценивается величиной растягивающей силы, при которой происходит разрыв мышцы. Сила, при которой происходит разрыв мышцы составляет от 0.1 до 0.3 Н/мм2. Предел прочности сухожилий на два порядка величины больше и составляет 50 Н/мм2. Однако, при очень быстрых движениях возможен разрыв более прочного сухожилия, а мышца остается целой, успев самортизировать.

Релаксация – свойство мышца, проявляющееся в постепенном уменьшении силы тяги при постоянной длине мышцы. Релаксация проявляется, например, при прыжке вверх, если во время глубокого приседа спортсмен делает паузу. Чем пауза длительнее, тем сила отталкивания и высота выпрыгивания меньше.

Существует два вида группового взаимодействия мышц: синергизм и антагонизм.

Мышцы-синергисты перемещают звенья тела в одном направлении. Например, при сгибании руки в локтевом суставе участвуют двуглавая мышца плеча, плечевая и плече-лучевая мышцы и т.д. Результатом синергического взаимодействия мышц служит увеличение результирующей силы действия. При наличии травмы, а также при локальном утомлении какой-либо мышцы ее синергисты обеспечивают выполнение двигательного действия.

Мышцы-антагонисты имеют, наоборот, разнонаправленное действие. Так, если одна из них выполняет преодолевающую работу, то другая – уступающую.

Механические свойства костей определяются их разнообразными функциями; кроме двигательной, они выполняют защитную и опорную функции. Так кости черепа и грудной клетки защищают внутренние органы, а кости позвоночника и конечностей выполняют опорную функцию.

Выделяют 4 вида механического воздействия на кость: растяжение, сжатие, изгиб и кручение. Установлено, что прочность кости на растяжение почти равна прочности чугуна. При сжатии прочность костей еще выше. Самая массивная кость – большеберцовая (основная кость бедра) выдерживает силу сжатия в 16–18 кН.

Менее прочны кости на изгиб и кручение. Однако регулярные тренировки приводят к гипертрофии костей. Так, у штангистов утолщаются кости ног и позвоночника, у теннисистов – кости предплечья и т.п.

Механические свойства суставов зависят от их строения. Суставная поверхность смачивается синовиальной жидкостью, которую хранит суставная сумка. Синовиальная жидкость обеспечивает уменьшение трения в суставе примерно в 20 раз. При этом при снижении нагрузки на сустав жидкость поглощается губчатыми образованиями сустава, а при увеличении нагрузки она выжимается для смачивания поверхности сустава и уменьшения коэффициента трения.

8. Геометрия масс тела

Геометрия масс тела (распределение масс тела) характеризуется такими показателями, как вес (масса) отдельных звеньев тела, положение центров масс отдельных звеньев и всего тела, моменты инерции и др.

Общий центр масс тела человека – Вес отдельных звеньев тела зависит от веса тела в целом. Приближенные величины относительного веса звеньев тела. относительный вес отдельных звеньев тела не постоянен. Например, если человек, весивший 60 кг, затем, поправившись, стал весить 90 кг, то это не означает, что все звенья его тела, в частности стопы, кисти, голова, стали тоже в 1,5 раза тяжелее. Более точно можно определить вес отдельных звеньев тела, использовав уравнения регрессии, приведенные в табл. 2

Центр масс твердого тела является вполне определенной фиксированной точкой, не изменяющей своего положения относительно тела. Центр масс системы тел может менять свое положение, если изменяются расстояния между точками этой системы.

В биомеханике различают центры масс отдельных звеньев тела (например, голени или предплечья) и центр масс всего тела.

У человека, стоящего в основной стойке, горизонтальная плоскость, проходящая через ОЦМ, находится примерно на уровне второго крестцового позвонка. В положении лежа ОЦМ смещается в Сторону головы примерно на 1%; у женщин он расположен в среднем на 1–2% ниже, чем у мужчин; у детей-дошкольников он существенно выше, чем у взрослых (например, у годовалых детей в среднем на 15%).

При изменении позы ОЦМ тела, естественно, смещается и в некоторых случаях, в частности при наклонах вперед и назад, может находиться вне тела человека.

Чтобы определить положение ОЦМ тела, используют либо экспериментальные, либо расчетные методы.

9. Составные движения в биокинематичеких цепях

Составное движение образуется из нескольких составляющих движений звеньев в сочленениях биокинематической цепи.

В простейших случаях в механике складываются два поступательных движения двух тел.

Когда в составном движений принимают участие два тела, то обычно составляющие движения называют переносными и относительными. Платформа как бы переносит на себе движение по ней груза; движение платформы переносное. Движение же груза по платформе относительно системы отсчета, связанной с самой платформой, относительное. Тогда движение груза в неподвижной системе отсчета (Земля) результирующее: это результат двух составляющих движений.

В теле человека таких движений не бывает, так как почти во всех суставах звенья движутся вокруг осей сочленений. В биокинематических цепях обычно движется много звеньев; одни «несут» на себе движения других (несущие и несомые движения). Несущее движение (например, мах бедром при выносе ноги в беге) изменяет несомое (сгибание голени).

При движениях в незамкнутой кинематической цепи угловые перемещения, скорости и ускорения, если они направлены в одну сторону, складываются. Разнонаправленные движения не складываются, а вычитаются (суммируются алгебраически).

Сложнее составные движения, в которых составляющие движения вращательные (по дуге окружности) и поступательные (вдоль радиуса)

В составном движении, образованном из вращательных составляющих движений (в биокинематической цепи), вследствие суммирования равнонаправленных и вычитания разнонаправленных движений в разных суставах всегда происходит прибавление движения и вдоль радиуса (поступательное). Значит, биокинематическая цепь (по прямой линии – от ее начала до конца) укорачивается или удлиняется (например, при махе рукой, ногой в прыжках).

10. Биомеханическая характеристика силовых качеств

В биомеханике силой действия человека называется сила воздействия его на внешнее физическое окружение, передаваемая через рабочие точки своего тела. Примером могут быть сила давления на опору, сила тяги за рукоятку станового динамометра и т.п.

Момент силы – это мера вращающего действия силы на тело

Сила действия человека (СДЧ), как и всякая другая сила, может быть представлена в виде вектора и определена указанием: 1) направления, 2) величины (скалярной) и 3) точки приложения.

Сила действия человека зависит от состояния данного человека и его волевых усилий, т.е. стремления проявить ту или иную величину силы, в частности максимальную силу, а также от внешних условий, в частности от параметров двигательных заданий.

Понятие о силовых качествах

Силовые качества характеризуются максимальными величинами силы действия (F mm), которую может проявить тот или иной человек. Вместо термина «силовые качества» используют также термины «мышечная сила», «силовые возможности», «силовые способности». Наиболее распространенной является следующая классификация силовых качеств:

Силовые качества Условия проявления

1. Собственно-силовые Статический режим и медленные (статическая сила) движения

2. Скоростно-силовые:

а) динамическая сила Быстрые движения

б) амортизационная сила Уступающие движения

Сила действия человека и сила мышц

Сила действия человека непосредственно зависит от сил тяги мышц, т.е. сил, с которыми отдельные мышцы тянут за костные рычаги. Однако между натяжением той или иной мышцы и силой действия нет однозначного соответствия. Это объясняется, во-первых, тем, что почти любое движение происходит в результате сокращения большого числа мышечных групп; сила действия – итог их совместной активности; и, во-вторых, тем, что при изменении суставных углов меняются условия тяги мышц за кость, в частности плечи сил мышечной тяги

11. Биомеханическая характеристика скоростных качеств

Скоростные качества характеризуются способностью человека совершать двигательные действия в минимальный для данных условий отрезок времени. При этом предполагается, что выполнение задания длится небольшое время и утомление не возникает.

Принято выделять три основные (элементарные) разновидности проявления скоростных качеств:

1) скорость одиночного движения (при малом внешнем сопротивлении);

2) частоту движений;

3) латентное время реакции.

Между показателями скорости одиночного движения, частоты движений и латентного времени реакции у разных людей корреляция очень мала. Например, можно отличаться очень быстрой реакцией и быть относительно медленным в движениях и наоборот. Имея это в виду, говорят, что элементарные разновидности скоростных качеств относительно независимы друг от друга.

В практике приходится обычно встречаться с комплексным проявлением скоростных качеств. Так, в спринтерском беге результат зависит от времени реакции на старте, скорости отдельных движений (отталкивания, сведения бедер в безопорной фазе) и частоты шагов. Скорость, достигаемая в целостном сложнокоординированном движении, зависит не только от скоростных качеств спортсмена, но и от других причин (например, скорость бега – от длины шагов, а та, в свою очередь, от длины ног, силы и техники отталкивания), поэтому она лишь косвенно характеризует скоростные качества, и при детальном анализе именно элементарные формы проявления скоростных качеств оказываются наиболее показательными.

12. Биомеханическая характеристика выносливости

Выносливостью называется способность противостоять утомлению. При прочих равных условиях у более выносливых людей наступает позже как первая, так и вторая фаза утомления. Основным мерилом выносливости считают время, в течение которого человек способен поддерживать заданную интенсивность двигательного задания. Согласно правилу обратимости двигательных заданий, для измерения выносливости можно использовать и другие эргометрические показатели. Рассмотрим пример: спортсмены лежа выжимают «до отказа» штангу 50 кг. Если не учитывать уровень их максимальной (F mm) силы, то более выносливыми следует считать тех, кто смог поднять штангу большее число раз. Если же учесть, что максимальная сила у одних спортсменов невелика (скажем, 55 кг), а у других намного больше, то ясно, что на полученный результат повлияет не только разный уровень выносливости испытуемых, но и разные силовые возможности. Устранить их влияние можно было бы, например, так: предложить всем выжимать штангу, вес которой равен определенному проценту от их максимальной силы (скажем, 50% от F mm). В первом случае интенсивность задания уравнивалась в абсолютных единицах (килограммах), во втором – в относительных (в% от R m).

Примерами латентных показателей выносливости могут быть:

1. Коэффициент выносливости – отношение времени преодоления всей дистанции ко времени преодоления какого-либо короткого отрезка (100 м в беге, 50 м в плавании и т.п.): KB = t д, где t эт – время на дистанции (например, 400 м за 48,0 с), t 3 T – лучшее время на коротком («эталонной») отрезке (100 м – 11,0 с). KB = 48,0:11,0 = 4,3636.

2. Запас скорости (по Н.Г. Озолину) – разность между средним временем преодоления эталонного отрезка при прохождении всей дистанции и лучшим временем на этом отрезке. Запас скорости (3 C)= t д: n – t 3 r, где и – число, показывающее, во сколько раз эталонный отрезок меньше всей дистанции (400 м: 100 м = 4). Запас скорости =48,0:4–11,0 = 1 с.

Чем меньше запас скорости, тем выше выносливость. С ростом спортивной квалификации запас скорости, как правило, уменьшается. Например, у сильнейших бегунов мира на 400 м он равен 0,9–1,0 с, у начинающих – 2–2,5 с. С увеличением дистанции запас скорости также увеличивается.

Тренеры в видах спорта циклического характера должны знать, чему равны показатели запаса скорости (или другие латентные показатели выносливости) на разных дистанциях у спортсменов разной квалификации, это поможет определять слабые стороны в подготовке своих учеников, видеть, что именно отстает – скорость или выносливость.

13. Биомеханическая характеристика гибкости

Гибкостью называется способность выполнять движения с большой амплитудой. Слово «гибкость» используется обычно как более общий термин. Применительно к отдельным суставам говорят о подвижности в них. Для точного измерения гибкости (подвижности в суставах) надо измерить угол в соответствующем сочленении в крайнем возможном положении между сочленяющимися звеньями. Измерение углов движений в суставах, как известно, называется гониометрией (от греч. «гони» – угол и «метр» – мера). Поэтому говорят, что для измерения гибкости используются гиниометрические показатели. Наиболее детальный способ измерения гибкости – так называемый глобографический. При этом поверхность, очерчиваемая в пространстве дистальной точкой движущейся кости, рассматривается как «глобус», на котором определяют предельные значения «меридианов» и «параллелей». В спортивной практике для измерения гибкости нередко используют не угловые, а линейные меры (рис. 60, В). В этом случае на результате измерения могут сказаться размеры тела, например длина рук (при наклоне вперед или выполнении выкрута с палкой), длина туловища (при измерении расстояния между руками и ногами во время выполнения гимнастического моста). Поэтому линейные меры менее точны, и, применяя их, следует вводить поправки, устраняющие нежелательное влияние размеров тела.

Выделяют активную и пассивную гибкость. Активная гибкость – способность выполнять движения в каком-либо суставе с большой амплитудой за счет активности мышечных групп, проходящих через этот сустав (пример: амплитуда подъема ноги в равновесии «ласточка»). Пассивная гибкость определяется наивысшей амплитудой, которую можно достичь за счет внешних сил. Показатели пассивной гибкости больше соответствующих показателей активной гибкости. Разница между ними называется дефицитом активной гибкости. Он определяется зависимостью «длина – сила тяги» активной мышцы, в частности величиной сипы тяги, которую может проявить мышца при своем наибольшем укорочении. Если эта сила недостаточна для дальнейшего перемещения сочленяющихся звеньев тела, то говорят об активной недостаточности мышцы. Экспериментально показано, что активная недостаточность может быть уменьшена (соответственно уменьшен дефицит активной гибкости и повышена сама активная гибкость) за счет силовых упражнений, выполняемых с большой амплитудой движения. Рост силовых качеств приводит в этом случае к увеличению показателей активной гибкости.

Гибкость зависит от ряда условий: температуры окружающей среды (повышение температуры приводит к повышению гибкости), времени суток (в середине дня она выше), разминки и др.

В спорте не следует добиваться предельного развития гибкости. Ее надо развивать лишь до такой степени, которая обеспечивает беспрепятственное выполнение необходимых движений. При этом величина гибкости должна несколько превосходить ту максимальную амплитуду, с которой выполняется движение («запас гибкости»).

14. Связь биомеханики с другими науками

Биомеханика как одна из биологических наук нового типа начинает сближаться по методам исследования с точными науками. Общая биомеханика как раздел биофизики, включающая изучение внутриорганизменных биосистем, возникла на стыке физико-математических и биологических областей знания. Успехи этих наук, использование идей и подходов кибернетики, а также научно-технический прогресс так или иначе сказываются на развитии биомеханики. В свою очередь, эти науки обогащаются данными биомеханики о физике живого. В биомеханических исследованиях применяются методы этих смежных наук; в то же время в исследованиях их проблем могут применяться биомеханические методы. Здесь налицо двусторонняя связь, обеспечивающая взаимное обогащение теории и методов исследования.

Несколько иначе связана биомеханика с отраслями знания, в которых изучаются конкретные области прикладной двигательной деятельности. Так, развивающаяся инженерная биомеханика смыкается с бионикой, инженерной психологией («человек и машина»), связана с разработкой роботов, манипуляторов и других технических устройств, умножающих возможности человека в труде. Медицинская биомеханика дает обоснование ряду методов протезирования, протезостроения, травматологии, ортопедии, лечебной физической культуры. В космической медицине решаются задачи подготовки космонавтов, обеспечения их работоспособности в условиях невесомости, а также двигательных действий в космосе. Биомеханика как бы обслуживает эти области деятельности в процессе решения их прикладных задач.

Методы и законы биомеханики спорта используются также для совершенствования теории и методики физического воспитания, врачебного контроля, спортивно-педагогических и других дисциплин, решающих свои конкретные задачи в области физического воспитания.

15. Сила и момент силы

Сила – это мера механического действия одного тела на другое Численно она определяется произведением массы тела на его ускорение, вызванное данной силой:

Измерение силы, так же как и массы, основано на втором закон! Ньютона. Сила, приложенная к данному телу, вызывает его ускорение Источником силы служит другое тело; следовательно, взаимодействуют два тела. Таким образом, имеется «действие» второго тела на первое и «противодействие» первого тела, приложенное ко второму; Поскольку действие и противодействие приложены к разным телам их нельзя складывать, заменять равнодействующей.

Момент силы – это мера вращающего действия силы на тело; он определяется произведением модуля силы на ее плечо. Момент силы считают положительным, когда сила вызывает поворот тела против часовой стрелки, и отрицательным при повороте тела по часовой стрелке (со стороны наблюдателя).

Момент силы – величина векторная: сила проявляет свое вращающее действие, когда она приложена на ее плече (рис. 8, а). Иначе! говоря, линия действия силы не должна проходить через ось вращения. Если сила лежит не в плоскости, перпендикулярной к оси, находят составляющую силы, лежащую в этой плоскости (рис. 8, б); она и вызывает момент силы относительно оси. Остальные составляющие на него не влияют. Понятно, что сила, совпадающая с осью или параллельная ей, также не имеет плеча относительно оси, а следовательно, нет и ее момента.

16. Импульс силы

Импульс силы – это мера воздействия силы на тело за данный промежуток времени (в поступательном движении). За конечный промежуток времени он равен определенному интегралу от элементарного импульса силы, где пределами интегрирования являются моменты начала и конца промежутка времени действия силы:

В случае одновременного действия нескольких сил сумма их импульсов равна импульсу их равнодействующей за то же время. Любая сила, приложенная даже в доли секунды (например, при отталкивании коньком от льда), имеет импульс (рис. 9).

Во вращательном движении момент силы, действуя в течение определенного времени, создает импульс момента силы., Импульс момента силы – это мера воздействия момента силы относительно данной оси за данный промежуток времени (во вра­щательном движении).

17. Соединение звеньев тела

Соединенные два соседних звена тела образуют пару, а пары, в свою очередь, соединены в цепи.

Биокинематическая пара – это подвижное (кинематическое) соединение двух костных звеньев, в котором возможности движений определяются его строением и управляющим воздействием мышц. В технических механизмах соединения двух звеньев – кинематические пары – устроены обычно так, что возможны лишь вполне определенные, заранее заданные движения. Одни возможности не ограничены (их характеризуют степени свободы движения), другие полностью ограничены (их характеризуют степени связи).

Различают связи: а) геометрические (постоянные препятствия перемещению в каком-либо направлении, например костное ограничение в суставе) и б) кинематические (ограничение скорости, например мышцей-антагонистом).

В биокинематичеких парах имеются постоянные степени связи, которые определяют собой сколько как максимум и каких остается степеней свободы движения. Почти все биокинематические пары в основном вращательные (шарнирные); немногие допускают чисто поступательное скольжение звеньев относительно друг друга и лишь одна пара (голеностопный сустав) – винтовое движение.

Биокинематическая цепь – это последовательное либо незамкнутое (разветвленное), либо замкнутое соединение ряда биокинематических пар (рис. 10, а).

В незамкнутых цепях имеется свободное (конечное) звено, входящее лишь в одну пару. В замкнутых цепях нет свободного конечного звена, каждое звено входит в две пары.

В незамкнутой цепи, следовательно, возможны изолированные движения в каждом отдельно взятом суставе. В двигательных действиях движения в незамкнутых цепях происходят обычно одновременно во многих суставах, но возможность изолированного движения не исключена.

В замкнутой цепи изолированные движения в одном суставе невозможны: в движение неизбежно одновременно вовлекаются и другие соединения (рис. 10, б).

Значительная часть незамкнутых биокинематических цепей оснащена многосуставными мышцами. Поэтому движения в одних суставах через такие мышцы бывают связаны с движениями в соседних суставах. Однако при точном управлении движениями во многих случаях эту взаимную связь можно преодолеть, «выключить». В замкнутых же цепях связь непреодолима и действия мышц обязательно передаются на отдаленные суставы.

Незамкнутая цепь может стать замкнутой, если конечное свободное звено получит связь (опора, захват) с другим звеном цепи (непосредственно или через какое-либо тело).

18. Степени свободы в биомеханических цепях

Если у физического тела нет никаких ограничений (связей), оно может двигаться в пространстве во всех трех измерениях, т.е. г относительно трех взаимно перпендикулярных осей (поступательно), а также вокруг них (вращательно). Следовательно, у такого тела шесть степеней свободы движения.

Каждая связь уменьшает число степеней свободы. Зафиксировав одну точку свободного тела, сделав его звеном пары, фазу лишают его трех степеней свободы – возможных линейных перемещений вдоль трех основных осей координат. Примером может служить шаровидный сустав – тазобедренный, в котором три степени свободы из шести (возможно вращение относительно трех осей). Закрепление двух точек звена говорит о наличии оси, проходящей через эти точки. В таком случае остается одна степень свободы. Пример подобного ограничения – одноосный сустав, например межфаланговый. Закрепление третьей точки, не лежащей на этой оси, полностью лишает звено свободы движений. Такое соединение к суставам не относится. В анатомии выделяют также двуосные суставы; они имеют вторую степень свободы вследствие неконгруэнтности (неполного соответствия по форме) суставных поверхностей (суставы лучезапястный и пястнофаланговый 1-го пальца).

Почти во всех суставах (кроме межфаланговых, лучелоктевых и атлантоосевого) степеней свободы больше, чем одна. Поэтому устройство пассивного аппарата в них обусловливает неопределенность движений, множество возможностей движений («неполносвязный механизм»). Управляющие воздействия мышц вызывают дополнительные связи и оставляют для движения только одну степень свободы («полносвязный механизм»). Так обеспечивается одна-единственная возможность движений – именно та, которая требуется.

19. Строение тела и моторика человека

Как двигательные возможности людей, так и многие индивидуальные черты спортивной техники в значительной степени зависят от особенностей телосложения. К ним в первую очередь относят:

а) тотальные размеры тела – основные размеры, характеризующие его величину (длина тела, вес, окружность грудной клетки, поверхность тела и т.п.);

б) пропорции тела – соотношение размеров отдельных частей тела (конечностей, туловища и др.);

в) конституциональные особенности.

Тотальные размеры тела у людей существенно различны. В одном и том же виде спорта (например, в борьбе или тяжелой атлетике) можно встретить спортсменов с весом тела менее 50 и свыше 150 кг. Двигательные возможности этих спортсменов будут разными.

При одинаковом уровне тренированности люди большего веса могут проявлять большую силу действия. С этим, в частности, связано деление на весовые категории в таких видах спорта, как борьба, бокс, тяжелая атлетика.

Для сравнения силовых качеств людей различного веса обычно пользуются понятием «относительная сила», под которым понимают величину силы действия, приходящейся на 1 кг собственного веса. Силу действия, которую спортсмен проявляет в каком-либо движении безотносительно к собственному весу, иногда называют абсолютной силой:

У людей примерно одинаковой тренированности, но разного веса абсолютная сила с увеличением веса возрастает, а относительная падает (рис.). Аналогичные закономерности наблюдаются и в отношении некоторых других функциональных показателей (например, максимального потребления кислорода – МПК). В то же время, скажем, высота подъема ОЦТ в прыжках или дистанционная скорость бега не зависят от тотальных размеров тела, а максимальная частота движений и стартовое ускорение уменьшаются с их увеличением.

20. Роль созревания в онтогенезе моторики

Онтогенезом моторики называется изменение движений и двигательных возможностей человека на протяжении его жизни. Новорожденный – существо, не владеющее даже простейшими движениями. С возрастом его двигательные возможности расширяются, достигают расцвета в молодости и постепенно снижаются к старости.

Роль созревания и научения в онтогенезе моторики:

Два основных фактора определяют развитие моторики – созревание и научение. Созреванием называются наследственно обусловленные изменения анатомического строения и физиологических функций организма, происходящие в течение жизни человека: увеличение размеров и изменение формы тела ребенка в процессе его роста, изменения, связанные с половым созреванием, старением и др. В раннем детстве громадное значение имеет дозревание нервно-мышечного аппарата (в частности, коры больших полушарий головного мозга, которая к моменту рождения еще не сформировалась). В основных чертах двигательный аппарат ребенка формируется лишь к 2–2,5 годам. Под научением понимают освоение новых движений или совершенствование в них под влиянием специальной практики, обучения или тренировки. Таким образом, онтогенез моторики определяется взаимодействием созревания и научения. При попытках, в частности, раздельного обучения близнецов было показано, что сроки овладения некоторыми движениями (например, начало ходьбы) не изменялись под влиянием обучения и помощи; другие движения осваивались намного быстрее обычного (например, можно обучить ребенка катанию на роликовых коньках одновременно с началом ходьбы, а обучить плавать даже раньше, чем ходить). Однако иногда чрезмерно раннее обучение мешает овладению движением. Например, годовалые дети, ежедневно обучавшиеся в течение полугода езде на трехколесном велосипеде, хуже ездили на нем впоследствии из-за неправильных навыков и потери интереса, чем дети, которые впервые сели на велосипед в более позднем возрасте.

Двигательный возраст:

Если измерить результаты в каких-либо двигательных заданиях большой группы детей одного возраста, то можно определить средние достижения, которые они показывают. Зная затем результаты отдельного ребенка, можно установить, какому возрасту в среднем соответствует данный результат. Таким образом определяют двигательный возраст детей.

Конечно, не все дети одного и того же возраста показывают одинаковые результаты. Детей, у которых двигательный возраст опережает календарный, называют двигательными акселератами. Детей, у которых двигательное развитие отстает, называют двигательными ретардантами. Например, если подросток в возрасте 14 лет и 2 месяца прыгает в длину с места на 170 см, он двигательный ретардант (в этом упражнении), а если его результат более 210 см, – двигательный акселерат.

Прогноз развития моторики

При начальном выборе спортивной специализации, отборе в ДЮСШ и некоторые специальные школы (балетную, цирковую и др.) встает задача прогноза двигательной одаренности. Как порекомендовать ребенку именно тот вид спорта, в котором он сможет добиться наибольших успехов, как выявить наиболее одаренных? Для ответа на эти вопросы проводят научные исследования в двух основных направлениях:

а) изучение стабильности показателей моторики,

б) изучение наследственных влияний.

21. Биодинамика прыжка

В прыжках расстояние преодолевается полетом. При этом достигается либо наибольшая длина прыжка (прыжок в длину с разбега, тройной прыжок), либо наибольшая высота (прыжок в высоту с разбега, прыжок с шестом), либо значительная и длина и высота (опорный прыжок в гимнастике).

В разбеге решаются две задачи: создание необходимой скорости к моменту прихода на место отталкивания и создание оптимальных условий для опорного взаимодействия.

Отталкивание

Отталкивание от опоры в прыжках совершается за счет выпрямления толчковой нога, маховых движений рук и туловища. Задача отталкивания – обеспечить максимальную величину вектора начальной скорости ОЦМ и оптимальное ее направление. После отталкивания, в полете, тело спортсмена всегда совершает движения вокруг осей. Поэтому в задачи отталкивания входит также и начало управления этими движениями.

В полете траектория ОЦМ предопределена величиной и направлением вектора начальной скорости ОЦМ (углом вылета). Движения представляют собой движения звеньев вокруг осей, проходящих через ОЦМ. Задача сводится к возможно более дальнему приземлению, удерживая стопы как можно выше.

22. Движения центра масс системы

Центром масс называется точка, где пересекаются линии действия всех сил, не вызывающих вращение тела. В поле тяготения центр масс совпадает с центром тяжести. Положение общего центра масс тела определяется тем, где находятся центры масс отдельных звеньев. Для человека это зависит от его позы, т.е. пространственного положения элементов тела.

В человеческом теле около 70 звеньев, но для биомеханического моделирования чаще всего достаточно 15-звенной модели человеческого тела (например, голова, бедро, стопа, кисть и т.д.). Зная, каковы массы и моменты инерции звеньев тела и где расположены их центры масс, можно решить многие задачи биомеханики, в том числе:

определить импульс тела;

определить момент количества движения, при этом надо учитывать, что величины моментов относительно разных осей неодинаковы;

оценить, легко или трудно управлять скоростью тела или отдельного звена;

определить степень устойчивости тела и т.д.

23. Эффективность техники, ее виды

Эффективностью владения спортивной техникой (или эффективностью техники) того или иного спортсмена называется степень близости ее к наиболее рациональному варианту. Эффективность техники (в отличие от рациональности) – это характеристика не того или иного варианта техники, а качества владения техникой.

В зависимости от того, как определяется рациональная техника (образец, стандарт), различают три группы показателей ее эффективности.

Показатели абсолютной эффективности характеризуют близость к образцу, в качестве которого выбирается наиболее рациональный вариант техники, определенный на основе биомеханических, физиологических, психологических, эстетических соображений.

В простейшем случае мерой эффективности техники может явиться показанный спортсменом результат. Таким способом часто оценивают эффективность технических приемов в единоборствах и спортивных играх. Например, в баскетболе эффективность техники штрафных бросков естественно оценивать по проценту попаданий.

Сравнительная эффективность – В этом случае за образец берется техника спортсменов высокой квалификации. Те признаки техники, которые закономерно отличаются у спортсменов разной квалификации (т.е. изменяются с ростом спортивного мастерства), называются дискриминативными 1 призна­ками. Такие признаки эффективности техники используют в качестве основных показателей лишь тогда, когда техника движений очень сложна и на основе биомеханического анализа не удается определить ее наиболее рациональный вариант. В других случаях дискриминативные признаки дополняют показатели абсолютной эффективности, очень часто совпадая с ними.

При оценке эффективности техники с помощью дискриминативных признаков надо помнить, что техника даже выдающихся спортсменов может быть не вполне рациональной.

Реализационная эффективность (эффективность реализации) – Идея этих показателей состоит в сопоставлении показанного спортсменом результата либо с тем достижением, которое он по уровню развития своих двигательных качеств потенциально может показать (вариант «А»), либо с затратами энергии и сил при выполнении оцениваемого спортивного движения (вариант «Б»).

Вариант «А». В данном случае эффективность техники оценивается по тому, насколько хорошо спортсмен использовал в движении свои двигательные возможности. При таком подходе опираются на существование связей между тремя показателями: спортивным результатом, уровнем развития двигательных качеств, эффективностью техники.

Практически это осуществляется путем сравнения результатов спортсмена:

а) в технически сложном действии (как правило, это то движение, в котором специализируется спортсмен);

б) в технически более простых заданиях, требующих развития тех же двигательных качеств, что и основные.

24. Строение биомеханической системы

Для изучения опорно-двигательного аппарата человека как биомеханической системы необходимо последовательно рассмотреть строение этой системы и ее свойства. С точки зрения биомеханики опорно-двигательный аппарат – это управляемые биокинематические цепи (звенья и их соединения), оснащенные группами мышц. Вместе они выполняют задаваемые движения как биомеханизм.

Самой характерной чертой строения биомеханической системы считается его переменный характер. И число движущихся звеньев, и степени свободы движений, и состав мышечных групп, и их взаимодействия переменны.

Звенья биокинематических цепей

Биокинематические цепи опорно-двигательного аппарата состоят из подвижно соединенных звеньев (твердых, упругих и гибких) и отличаются их переменным составом, своей длиной и формой (составные рычаги и маятники).

Фиксирование суставов (блокада) и их освобождение (снятие динамических связей – тяги мышц) изменяют число движущихся звеньев в цепи. Она может превратиться как бы в одно звено или сохранять движение в части сочленений или во всех сочленениях.

Расстояние по прямой от проксимального сочленения до конца открытой цепи при ее сгибании-разгибании изменяется. Многозвенные маятники поэтому имеют переменную длину. Это влияет на величину инертного сопротивления (изменения момента инерции).

Биокинематические цепи, замыкаясь геометрически (связыванием между собой концевых звеньев), изменяют свои свойства (передача усилий, возможности управления). В частности, возникают составные рычаги со сложной передачей тяг многосуставных мышц. Твердые; Звенья (кости), упругие (мышцы) и гибкие (связки, сами мышцы; и их сухожилия), изменяя степень и характер своего участия в движениях, обеспечивают многообразные возможности движений.

Механизмы соединений

Механизмы соединений звеньев в биомеханических цепях и неодноосных сочленениях позволяют определять требуемое движение благодаря образованию биодинамически полносвязного механизма.

Биодинамически полносвязный механизм (биомеханизм) характеризуется выключением лишних в данном движении степеней свободы. Тяги групп мышц обеспечивают требуемое направление движений звеньев в биокинематических цепях и регулирование их скоростей. Кроме этого, мышцы при необходимости ограничивают и размах движений, затормаживая звенья раньше, чем наступает пассивное ограничение (костно-суставно-связочное).

Направление движений, скорости звеньев и размах движений в ряде суставов взаимосвязаны благодаря совместному действию многосуставных мышц.

25. Перемещающие движения

Перемещающимися в биомеханике называют движения, задача которых – перемещение какого-либо тела (снаряда, мяча, соперника, партнера). Перемещающие движения разнообразны. Примерами в спорте могут быть метания, удары по мячу, броски партнера в акробатике и т.п.

К перемещающим движениям в спорте обычно предъявляются требования достичь максимальных величин:

а) силы действия (при подъеме штанги), б) скорости перемещаемого тела, (в метаниях), в) точности (штрафные броски в баскетболе). Нередки и случаи, когда эти требования (например, скорости и точности) предъявляются совместно.

Среди перемещающих различают движения:

а) с разгоном перемещаемых тел (например, метание копья),

б) с ударным взаимодействием (например, удары в теннисе или футболе).

Поскольку большинство спортивных перемещающих движений связано с сообщением скорости вылета какому-нибудь снаряду (мячу, снаряду для метания), рассмотрим прежде всего механические основы полета спортивных снарядов.

Полет спортивных снарядов

Траектория (в частности, дальность) полета снаряда определяется:

а) начальной скоростью вылета,

б) углом вылета,

в) местом (высотой) выпуска снаряда,

г) вращением снаряда и

д) сопротивлением воздуха, которое, в свою очередь, зависит от аэродинамических свойств снаряда, силы и направления ветра, плотности воздуха (в горах, где атмосферное давление ниже, плотность воздуха меньше и спортивный снаряд при тех же начальных условиях вылета может пролететь большее расстояние).

26. Биомеханика ударных действий

Ударными в биомеханике называются действия, результат которых достигается механическим ударом. В ударных действиях различают:

1. Замах – движение, предшествующее ударному движению и приводящее к увеличению расстояния между ударным звеном тела и предметом, по которому наносится удар. Эта фаза наиболее вариативна.

2. Ударное движение – от конца замаха до начала удара.

3. Ударное взаимодействие (или собственно удар) – столкновение ударяющихся тел.

4. Послеударное движение – движение ударного звена тела после прекращения контакта с предметом, по которому наносится удар.

Позвоночник без боли Игорь Анатольевич Борщенко

Биомеханические упражнения

Биомеханические упражнения

Упражнения «Пятка» и «Пятка с давлением» основаны на законах биомеханики – простое отрывание пятки от пола вызовет непроизвольное распрямление позвоночника.

Упражнение «Пятка»

Упражнение это очень простое. Нужно всего-навсего оторвать пятку (пятки) от пола. Казалось бы, ничего сложного в выполнении этого упражнения нет, однако биомеханика этого движения очень интересна! Когда мы сидим, то непроизвольно горбимся, поясница наша сгибается колесом, голова тоже смотрит вниз. Но как только вы оторвете пятку от пола, ваше тело, повинуясь законам биомеханики, распрямится. При изменении позы и поднятии пятки тело распрямляется с целью удержания равновесия. А теперь о том, как правильно выполнить это простое движение.

Напрягите брюшной пресс. А затем одну за другой ритмично отрывайте пятки от пола, после чего опускайте их снова на пол. Делайте это в течение 1 минуты.

Упражнение «Пятка с давлением»

Предлагаем вам усложненный вариант упражнения «Пятка».

Исходное положение – сидя на стуле.

Положите руки на колени. Поочередно отрывайте пятки от пола, при этом как бы сопротивляйтесь этому движению, надавливая в момент поднятия пятки на одноименное колено. Поднимайте и опускайте пятки с сопротивлением в течение 1 минуты. Во время выполнения упражнения держите брюшной пресс напряженным.

Это упражнение очень полезно для икроножных мышц.

Отрывайте пятку от пола!

Во время сидячей работы или путешествия вы можете периодически отрывать пятку одной или обеих ступней от пола. Это вызывает рефлекторное перераспределение мышечного тонуса и выпрямление поясницы. Если вы будете удерживать приподнятую пятку все время (носок на полу), это позволит удерживать правильную осанку в течение всего времени, пока вы сидите. Если устала одна голень удерживать пятку на весу, поменяйте ноги!

Усложненный вариант упражнения

Из книги Как преодолеть вредные привычки автора Дипак Чопра

УПРАЖНЕНИЯ Истинная цель упражнений состоит в том, чтобы наделить наши тело, разум и дух бодростью и силой. У многих людей упражнения принимают форму соревнования или экстремальной физической деятельности. Однако понятно, что в случае, когда какого-либо рода пагубное

Из книги Система здоровья Норбекова и Сам Чон До. Полный курс автора Юрий Хван

УПРАЖНЕНИЯ САМ ЧОН ДО РазминкаВ разминке мы выполняем все пластические упражнения по развитию всей суставной системы организма, начиная от шейных позвонков, потихоньку идя вниз до суставов пальцев ноги.Развитие мышц мы оставляем на занятия по отработке основной

Из книги Запоры. Что делать? автора Александр Геннадьевич Елисеев

Упражнения Поза полулотоса Последовательность выполнения:сядьте на пол, положив левую ногу на правое бедро и по возможности вывернув пятку;покачайте вверх-вниз правое колено, стараясь прижать его плотнее к полу;то же проделайте другой ногой. Одно колено всегда касается

Из книги Оздоровительно-боевая система «Белый Медведь» автора Владислав Эдуардович Мешалкин

«Короткие» биомеханические навыки «Короткие» навыки основаны на принципах, специфичных для человеческого существа, его опорно-силового и опорно-двигательного аппаратов. Применение на практике «коротких» навыков обеспечивает эффективность боевых действий при

Из книги Секреты атлетизма автора Юрий Шапошников

УПРАЖНЕНИЯ ДЛЯ РАЗВИТИЯ ДВУГЛАВЫХ МЫШЦ ПЛЕЧА УПРАЖНЕНИЯ ДЛЯ РАЗВИТИЯ МЫШЦ РУК И ПЛЕЧЕВОГО ПОЯСА Первое время часть упражнений лучше включать в утреннюю зарядку, а затем уже можно отводить для всего комплекса целиком специальное время. Каждое упражнение повторяйте 15-20

Из книги Кинезитерапия суставов и позвоночника автора Леонид Витальевич Рудницкий

Упражнения Ниже приведен комплекс упражнений лечебной гимнастики, которые можно выполнять в домашних

Из книги Стретчинг для здоровья и долголетия автора Ванесса Томпсон

Упражнения для шеи УПРАЖНЕНИЕ 1 Примите исходное положение: стоя, руки на поясе, корпус держим прямо. С закрытым ртом наклоняем голову вперед до касания подбородком груди и выдыхая, напрягаем мышцы задней поверхности шеи. Расслабляемся и делаем вдох. Повторяем упражнение

Из книги Упражнения для позвоночника: для тех, кто в пути автора Валентин Иванович Дикуль

Упражнения для шеи Очень многие обращаются к врачам, когда уже появилась боль. И это очень грубая ошибка. У нас у всех сейчас ослаблен иммунитет, мы ведем малоподвижный образ жизни. Экология нарушена, продукты некачественные, неправильно отдыхаем, неправильно сидим, спим.

Из книги Око настоящего возрождения автора Петр Левин

ВТОРАЯ ЧАСТЬ УПРАЖНЕНИЯ 6 Последовательность выполнения шестого упражнения Основная часть упражнения 61. Встаньте на колени на коврик, затем опуститесь на пятки.2. Выпрямите правую ногу и вытяните ее насколько возможно вправо. Согнутая левая нога при этом оказывается в

Из книги Диабет. Предупреждение, диагностика и лечение традиционными и нетрадиционными методами автора Виолетта Романовна Хамидова

Упражнения для рук Красивые руки – гордость любой женщины. А что делать, если они слишком полные? Во-первых, поможет массаж и обливание холодной водой.Кроме того, чтобы руки похудели, делайте следующие упражнения.Упражнение 1Встаньте прямо, вытяните вперед правую руку и

Из книги Дыхательная гимнастика А.Н. Стрельниковой автора Михаил Николаевич Щетинин

Упражнения для ног Упражнение «Носочки» Исходное положение: сидя на стуле, ноги вытянуты, ступни вместе. На счет «раз» тянем носочки от себя (как в балете) и одновременно делаем короткий, резкий, шумный вдох. Затем, без перерыва, на счет «два» тянем носочки на себя

Из книги Питание как основа здоровья. Самый простой и естественный способ за 6 недель восстановить силы организма и сбросить лишний вес автора Джоэл Фурман

Важны ли физические упражнения и какие упражнения подойдут лучше всего? Да, важно делать физические упражнения, но даже если ваши возможности ограничены, не стоит отчаиваться. Агрессивный план питания, предложенный мною на страницах этой книги, позволит вам похудеть.

Из книги Лечебная физкультура автора Николай Балашов

Упражнения в ЛФК Основным средством ЛФК являются физические упражнения - мышечные движения, мощный биологический стимулятор жизненных функций человека. ЛФК использует весь арсенал средств, накопленный физкультурой.С лечебной целью применяют специально подобранные и

Из книги Здоровье позвоночника автора Виктория Карпухина

Упражнения для рук Руки являются частой мишенью подагры. Упражнения для рук доступны всем: кистевой эспандер, отжимание от пола (если у вас получится отжимание на кулачках – это прекрасное упражнение, мне оно не под силу), лепка из пластилина, скатывание снежков зимой,

Из книги Позвоночник без боли автора Игорь Анатольевич Борщенко

Биомеханические упражнения Упражнения «Пятка» и «Пятка с давлением» основаны на законах биомеханики – простое отрывание пятки от пола вызовет непроизвольное распрямление позвоночника.Упражнение «Пятка»Исходное положение – сидя на стуле. Упражнение это очень

Из книги Худеем без соли. Сбалансированная бессолевая диета автора Хизер К. Джонс

Упражнения 1. ПРИСЕДАНИЕ(развивает четырехглавую мышцу, мышцы задней и внутренней поверхности бедра и ягодиц)ИСХОДНОЕ ПОЛОЖЕНИЕВзяв гантели, поставьте ноги на ширину плеч. Согните руки в локтях и поднимите гантели, чтобы они оказались на плечах.A. Держа спину прямо,