Сухожильный шлем черепа. Как апоневроз влияет на обвисание лица? Общая характеристика черепа

Взаимодействие между, клетками в ткани и соединение различных тканей в организме обеспечивается немембранными структурами, которые называются базальными пластинками. Эти, структуры подставляют собой как бы основу, которая скрепляет клетки и удерживает их вместе.

Несмотря на некоторое функциональное сходство с мембранами, базальные пластинки все-таки нельзя причислить к мембранам хотя бы потому, что они не содержат липидов и не являются непроницаемым барьером для веществ и ионов. Базальные пластинки состоят из полисахаридов, соединенных с белками. Благодаря своим свойствам: вязкости; способности образовывать гели и вызывать адгезию клеток - базальные пластинки не только связывают клетки друг с другом, но и способны поддерживать форму органа в целом.

Базальные пластинки имеют отчетливо выраженное ламеллярное волокнистое строение, напоминающее структуру мембран почечных канальцев, которые осуществляют фильтрацию. По химическому составу базальные мембраны близки к коллагену.

В их состав входят гликопротеины, содержащие дисахаридные цепи в спиральной части волокон и полисахаридные цепи в неспиральных участках. В отличие от коллагена базальные мембраны включают большое количество спиральных участков, S-S-связей и полисахаридных цепей.

Благодаря наличию специфических мест узнавания или изменению форм мембран в некоторых участках взаимодействия клеток внешняя поверхность цитоплазматических мембран многоклеточных организмов играет важную роль в создании межклеточных контактов. Этот термин рекомендуется употреблять в тех случаях, когда имеются промежутки между клеточными поверхностями, заполненные внеклеточным материалом. С целью уточнения механизмов взаимодействия близлежащих клеток используются также термины «межмембранное пространство», «парацеллюлярное пространство», «контактные комплексы».

Межклеточный контакт следует рассматривать как сложно организованную систему, состоящую из ряда специализированных элементов. Эти элементы четко идентифицируются с помощью электронной микроскопии, однако их номенклатура до настоящего времени достаточно не разработана. В различных тканях контакты, в зависимости от функционального назначения, могут включать и себя те или иные элементы. В настоящем разделе рассмотрены преимущественно межклеточные контакты эпителиоцитов, так как в состав этих контактов входят все известные типы специализированных элементов. К специализированным элементам межклеточных контактов относят: простое соединение, соединение типа «замка», плотное соединение, область слипания, щелевидное соединение, септированное соединение и лестничное соединение. В формировании этих элементов принимают участие все три компонента клеточной поверхности: надмембранный компонент, или гликокаліґкс, плазматическая мембрана и подмембранный компонент.

На рис. 6.2. показаны возможные места контактов между клетками эпителия тонкого кишечника. С помощью электронной микроскопии были обнаружены три типа контактных

Микроворсинки

align=right hspace=7>Плотный

Овальные

десмосомы

десмосомы

Базальная

пластинка

структур: плотный контакт, щелевой контакт и взаимодействие с помощью десмосом.

В зоне плотного контакта (tight junction) две плазматические мембраны полностью смыкаются, по при этом цитоплазматические пространства двух контактирующих клеток остаются отделенными друг от друга (рис. 6.3).

В таких контактах наружные участки мембран местами сливаются в общий слой толщиной 2-3 нм. Слияние наружных слоев мембран происходит не по всей площади плотного соединения, а представляет собой серии точечных слияний мембран. Эти точечные слияния, пересекаясь образуют сеть, располагающуюся »между апикальными краями контактирующих клеток.

На протяжении более чем ста лет термин «плотное соединение» использовался в качестве описательной системы для пространства контактирующих между собой двух клеток. Благодаря последним сорока годам исследований в данной области,

Цитоплазма


Мембраны

Коннексиновый цилиндр

а)

Рис. 6.3. Схематическое изображение плотного контакта (а) и щелевого контакта (б)

паши воззрения на природу плотного контакта, как своего рода цементирующей массы, значительно изменились. Несмотря на го, что наши знания о строении и функции этого образования еще далеки от идеальных, тем не менее уже сейчас достаточно данных, свидетельствующих о том, что это сложно организованная динамическая мультибелковая структура, избирательно проницаемая для определенных гидрофильных соединений (ионы, нутриенты, лекарства).

Морфологические особенности и регуляторные свойства плотного контакта, а также тот факт, что он является проницаемым для гидрофильных соединений незначительной молекулярной массы свидетельствуют об ограниченности просвета между двумя клетками. Существуют, по крайней мере, две гипотезы, объясняющие это явление. Первая, касается диаметра пор между контактирующими клетками. Так у энтероцитов человека они составляют 0,3-0,6 нм . Благодаря различному
размеру межклеточных пор, наблюдаемых вдоль кишечного тракта одного вида экспериментальных животных, а также их диаметра, обусловленного видом животного, скорости пара- целлюлярного переноса лекарств могут значительно колебаться. Так, например, антагонист Р-адренорецепторов атенолол (log D7a = - 1,9; молекулярная масса - 226) проявляет довольно высокую степень абсорбции в кишечнике собак (90 %) и только половину в организме крыс и человека .

Другой представитель этой группы - ксимотерол (log£)74 = = - 10; молекулярная масса - 339) имеет более низкие показатели (у собак 36 %, у крыс и человека соответственно 19 и 9 %).

Увеличение молекулярной массы, за счет присоединения соответствующих заместителей, в полиэтиленгликоле, кардинально меняло степень их парацеллюлярного транспорта. Варьирование молекулярной массой производных полиэтиленгли-, коля (281-591) уменьшало степень абсорбции веществ в кишечнике крыс от 79 до 2 %. Для организма собак, при использовании производных полиэтиленгликоля с молекулярными массами 600-900 этот показатель изменялся в интервале 100-13 %. Предполагается , что процессы, происходящие в организме крыс, в большей степени, напоминают аналогичные явления, наблюдаемые в организме человека.

Вторая гипотеза предполагает наличие между контактирующими клетками молекулярной структуры, управляющей проницаемостью щели (канала). В возбудимых мембранах при понижении покоя ниже определенной пороговой величины открываются каналы, по которым ион натрия поступает внутрь клетки. Предполагают, что в состоянии покоя в нервном волокне натриевые каналы закрыты воротами, которые открываются при деполяризации мембраны.

Иногда термин «ворота» применяют не только к каналу, но и к отдельному белку-каналоформеру. Например, на внутренней мембране митохондрий локализована Н+-АТФаза, формирующая канал проницаемости для ионов водорода, по которому они проникают с внутренней поверхности мембраны на наружную.

Наличие гипотетических ворот у контактирующих клеток должно быть отмечено присутствием в области плотного соединения специфических белков. В настоящее время установлено в этой области клеток существование целой группы трансмембранных и цитозольных белков, взаимодействующих не только между собой, но и со структурами цитоскелета.

Первым белком, который был изолирован из плотного контакта, а затем изучен является окклюдин. Его название, в переводе с английского (occludin), указывает на его запирающую (закрывающую) функцию.

Впервые окклюдин был обнаружен в гепатоцитах цыплят , а позже в различных клетках многих видов экспериментальных животных . Он относится к мембранным белкам и состоит из четырех доменов. Окклюдин выполняет двойную роль: 1) интеграция всех компонентов плотного контакта; 2) барьерная функция. При этом особое значение в перечисленных процессах имеют ЛЛконцевой участок молекулы окклюдина и его домены, расположенные на поверхности внешней мембраны клеток. Что касается С-концевого участка окклюдина, то ему отводится регуляторная роль, обусловленная его возможностью взаимодействовать с другими белками плотного контакта, которые в свою очередь связаны со структурами цитоскелета.

Таким образом, взаимодействие плотного соединения с цитоскелетом и способность окклюдина к фосфорилированию дают возможность выполнять этим белком регуляторные функции.

Недавно в плотном контакте обнаружено новое семейство специфических белков-окклюдинов. Эта группа белков подобна окклюдину и содержит четыре предполагаемых домена. К настоящему времени количество изученных клаудинов насчитывает 15 разновидностей . Экспрессия клаудинов 1 и 2 в фибробластах, у которых в норме отсутствуют эти белки, показала, что они, наряду с окклюдином, играют значительную роль в процессах парацеллюлярного транспорта (рис. 6.4).

Считается, что клаудины наряду с кадгеринами отвечают за формирование связи Между однотипными эндотелиальными клетками.

Кроме трансмембранных протеинов, структуру плотного контакта обеспечивают также три цитозольных белка. Они получили название белков, связанных с плотными соединениями (tight junction associated proteins - TJAPs).

Электронно-микроскопические исследования поверхности сколов замороженных тканей показывают, что в этой области клетки опоясаны лентой клеточного контакта иногда называемой «зоной слипания» (zonula occludens). Подмембранный компонент в ней представлен микрофиламентами диаметром 4-7 нм. Отсюда наименование трех представителей TJAPs (ZO-1, ZO-2 и ZO-3).

Первым из трех TJAPs был выделен и идентифицирован белок ZO-1 . Оказалось, что половина А-концевой части

молекулы ZO-1 взаимодействует с С-концевой частью окклюди- на, а вторая половина - с F-актином цитоскелета. Аналогично ведет себя и молекула ZO-2: половина ее А-концевой части взаимодействует с окклюдином, однако вторая - с А-концевым участком ZO-1. И, наконец, ZO-3 взаимодействует с окклюдином и ZO-1. Следовательно, во взаимодействии TJAPs возможны только два комплекса (ZO-1-ZO-2 и ZO-1-ZO-3). Тройственный комплекс в этой системе возникать не может, так как не возникает взаимодействие ZO-2-ZO-3.

Взаимосвязь отдельных компонентов (белков) в составе плотного контакта соседних клеток представлена на рисунке 6.4 148].

Если плотный контакт действительно может избирательно пропускать необходимые молекулы, то этот процесс должен определенным образом регулироваться. Как и во всех иных биологических процессах это могут быть физиологическая, клеточная или молекулярная регуляции. Основным показателем этого явления считается напряженность (диффузионное сопротивление) плотного соединения, изменение силы которой влечет за собой регулирование скорости парацеллюлярного транспорта веществ.

На примере некоторых питательных веществ предполагается 151 ], что их парацеллюлярный перенос является альтернативным, а скорее всего дополнительным процессом в общей цепи пищеварения. Так после употребления пищи, содержащей значительные количества глюкозы и аминокислот, напряженность плотного контакта уменьшается, что приводит к повышению процента всасываемости этих нутриентов парацеллюлярным путем. Более того активация натрий-зависимой системы активного транспорта глюкозы (Глют 1) в значительной степени увеличивает парацеллюлярные процессы.

Не являются исключением гормоны и нейротрансмиттеры (вазопрессин, ангиотензин II, эпинефрин), увеличивающие па- рацеллюлярную биодоступность ряда веществ. Аналогичные свойства отмечены и для цитокинов .

Определены некоторые клеточные и молекулярные механизмы регуляции действия белковых структур плотного контакта. Значительную активность по отношению к плотному соединению проявляют вторичные мессенджеры и протеинки- назы, определяя функциональное состояние его барьерной активности. Конечным этапом молекулярной регуляции является фосфорилирование белков плотного контакта и его сокращение или расслабление в системе актин-миозин микрофиламентов. Наиболее чувствительным звеном в общем процессе регулирования функции плотного контакта является фосфорилирование окклюдина. Очевидно с этим процессом связано становление и развитие структурных и барьерных функций плотного контакта.

Найдены и исследованы ингибиторы парацеллюлярного транспорта веществ. Они включают: хелатные комплексы иона кальция (Са2+), желчные кислоты, анионные суфрактанты, жирные кислоты (средней длины), эфиры жирных кислот, фосфорные эфиры.

В опытах на изолированных из аденокарциномы человека монослойных клеток Сасо-2 было показано, что ингибиторы активности плотного соединения действуют в различных концентрациях (от 0,2 цМ карнитинпальмитила до 20 цМ желчных кислот). Механизмы действия этих веществ все еще остаются не выясненными. Существуют различные предположения, которые касаются определенной группы ингибиторов. Все они суммированы в обзорной статье и их механизм действия разбит на несколько биохимических направлений: 1) активация фосфолипазы С; 2) влияние на каскад тирозинкиназа-фосфата- за (ингибирование тирозинкиназы неселективными ингибиторами фосфатазы); 3) увеличение концентрации АТФ.

В связи с обсуждаемой проблемой данной главы, пожалуй, наиболее сложным является вопрос взаимодействия молекул клеточной адгезии и плотного контакта. Межклеточная адгезия определяется в своей основе мембранными белками, принадлежащими к классу кадгеринов (Е, Р и N). Все они являются кальций-зависимыми трансмембранными гликопротеинами.

В их молекулярной структуре обнаружен внеклеточный домен, непосредственно участвующий в межклеточном связывании. Однако он не стимулирует формирование полноценного межклеточного соединения, поскольку для этого необходима и цитоплазматическая часть кадгерина, связывающаяся с внутриклеточными белками из группы катенинов .

В эпителиальных клетках были идентифицированы три ка- тенина (а, Р и у). Межклеточные каналы полностью открыты при внутриклеточной концентрации Са2+ ниже КГ7 моль/л и полностью закрыты при концентрации ионов 5-Ю-5 моль/л. В случае повреждения или гибели клетки, с биологической точки зрения, она должна быстро отсоединиться от соседней. При этом происходит значительное повышение внутриклеточной концентрации ионизированного кальция. Он может поступать в клетку через поврежденную мембрану, а также накапливаться вследствие невозможности поврежденной клетки откачивать Са2+ из цитозоля . В свою очередь, хелатирование внеклеточного Са2+ может привести к усилению активности внутриклеточных протеинкиназ с последующим ускорением дезинте- гративных процессов межклеточных соединений. И, наоборот, уменьшение, с одной стороны, парацеллюлярной проницаемости и дезинтеграции межклеточных контактов, с другой, осуществляется низкими концентрациями внеклеточных ионов кальция, ингибирующих активность протеинкиназ, в частности тирозинкиназы.

Любой биологический процесс имеет относительную норму и отклонение (патологию). Не является исключением и барьерная функция плотного контакта. Предполагается, что некоторые воспалительные процессы кишечника обусловлены чрезвычайно высокой степенью парацеллюлярной проницаемости этой ткани. Низкая проницаемость легочной эпителиальной ткани приводит к некоторым аллергическим реакциям .

В отдельных местах между клетками могут встречаться обширные межклеточные зоны со щелью между соседними клетками шириной 10-20 нм (рис. 6.3). В этой области к мембране со стороны цитоплазмы прилегают микрофиламен- ты диаметром 6,0 нм .

В условиях щелевого контакта (gap junction), ионы кальция могут играть важную роль в процессах связывания. Высокие концентрации ионов кальция приводят к «закрытию» щелей.

Структура щелевых контактов детально изучена с помощью электронной микроскопии. Оказалось, что эта область устлана глобулярными белковыми субъединицами, которые расположены таким образом, что образуют правильные полигональные структуры решетчатого типа с периодом 10 нм. Они образуют своего рода канал с внешним диаметром 8 и внутренним - 2 нм. Глобулярные белки в области щелевых контактов получили название коннексонов. Каждый коннексон состоит из шести субъединиц - коннексинов. Они принадлежат к над- семейству белков, обеспечивающих клеточную адгезию. В результате соединения двух коннексонов образуется канал, связывающий близлежащие клетки. Такие соединения у различных видов животных могут иметь различные свойства. В настоящее время установлены гены, кодирующие структуру коннексинов.

Щелевой контакт, включающий соответствующий канал диаметром 1,5 нм пропускает вещества, имеющие небольшую молекулярную массу (неорганические ионы, сахара, аминокислоты, нуклеотиды, витамины). Они практически непроницаемы для белков, нуклеиновых кислот и полисахаридов. Для АТФ и циклической АМФ отмечена возможность транспорта посредством щелевого контакта .

На наружной поверхности цитоплазматической мембраны находятся десмосомы - круглые, овальные и полусферические структуры, размер которых постоянен у разных клеток и равен в диаметре 0,2 нм (рис. 6.1, 6.5). Наряду с этим существуют клетки, лишенные десмосом. От десмосом вглубь цитоплазмы, каждой из контактирующих клеток на расстояние до 4 нм тянутся фибриллы.

Соединения клеток, присутствующих в тканях и органах многоклеточных организмов, образуются сложными структурами, которые именуются межклеточными контактами . Особенно часто они обнаруживаются в эпителиях, пограничных покровных слоях.

Ученые полагают, что первичное отделение пласта элементов, связанных между собой межклеточными контактами , обеспечило формирование и последующее развитие органов и тканей.

Благодаря использованию методов электронной микроскопии удалось накопить большой объем сведений об ультраструктуре этих связей. Однако их биохимический состав, а также молекулярная структура изучены сегодня недостаточно точно.

Общие сведения

В образовании межклеточных контактов мембрана участвует очень активно. У многоклеточных за счет взаимодействия элементов формируются сложные клеточные образования. Их сохранение может обеспечиваться разными способами.

Задачи нексусов состоят в формировании межклеточного внутритканевого контроля над биоактивностью клеток. Кроме того, такие контакты выполняют несколько специфических функций. К примеру, без них не было бы единства сокращения сердечных кардиомиоцитов, синхронных реакций клеток гладких мышц и пр.

Плотный контакт

Его называют также запирающей зоной. Он представлен в виде участка слияния поверхностных мембранных слоев соседних клеток. Эти зоны формируют непрерывную сеть, которая "сшита" интегральными белковыми молекулами мембран соседних клеточных элементов. Эти белки формируют структуру, похожую на ячеистую сеть. Ею окружен периметр клетки в виде пояска. При этом структура соединяет соседние поверхности.

Часто к плотному контакту прилегают ленточные десмосомы. Этот участок непроницаем для ионов и молекул. Следовательно, он запирает межклеточные щели и, собственно, внутреннюю среду всего организма от внешних факторов.

Значение запирающих зон

Плотный контакт препятствует диффузии соединений. К примеру, содержимое желудочной полости защищено от внутренней среды его стенок, белковые комплексы не могут перемещаться от свободной эпителиальной поверхности в межклеточное пространство и пр. Запирающая зона способствует также поляризации клетки.

Плотные контакты являются основой разнообразных барьеров, присутствующих в организме. При наличии запирающих зон перенос веществ в соседние среды осуществляется исключительно через клетку.

Синапсы

Они представляют собой специализированные соединения, расположенные в нейронах (нервных структурах). За счет них обеспечивается передача информации от одних клеток к другим.

Синаптическое соединение обнаруживается в специализированных участках и между двумя нервными клетками, и между нейроном и другим элементом, включенным в состав эффектора либо рецептора. К примеру, выделяют нервно-эпителиальные, нервно-мышечные синапсы.

Эти контакты разделяют на электрические и химические. Первые аналогичны щелевидным связям.

Сцепление с межклеточным веществом

Клетки присоединяются за счет рецепторов цитолеммы к адгезивным белкам. К примеру, рецепторы к фибронектину и ламинину в клетках эпителия обеспечивают сцепление с этими гликопротеинами. Ламинин и фибронектин являются адгезивными субстратами с фибриллярным элементом базальных мембран (IV тип коллагеновых волокон).

Полудесмосома

Со стороны клетки ее биохимический состав и строение подобен дисмосоме. От клетки в отходят особые якорные филаменты. За счет них объединяется мембрана с фибриллярным каркасом и заякоривающие фибриллы VII типа.

Точечный контакт

Его также называют фокальным. Точечный контакт входит в группу сцепляющих соединений. Наиболее характерным он считается для фибробластов. Клетка в таком случае сцепляется не с соседним клеточным элементами, а с межклеточными структурами. Рецепторные протеины взаимодействуют с адгезивными молекулами. К ним относят хондронектин, фибронектин и пр. Они связывают клеточные мембраны с внеклеточными волокнами.

Формирование точечного контакта осуществляется за счет актиновых микрофиламентов. Они закрепляются на внутренней части цитолеммы при помощи интегральных белков.

Плотный замыкающий контакт -- соприкасаются билипидные слои мембран соседних клеток. В области зоны плотных контактов между клетками не проходят практически никакие вещества.

Постоянные клеточные контакты скрепляют клетки в эпителиальном клеточном слое таким образом, что предотвращается перетекание даже малых молекул с одной стороны слоя на другую. Латеральная подвижность многих мембранных белков ограничена. Ограничение подвижности достигается с помощью барьеров, образованных при участии плотных контактов.

Клоны эпителиальных тканей (эпителии) функционируют в качестве избирательно-проницаемых барьеров, разделяющих жидкости с разным химическим составом по обе стороны слоя. В выполнении этой функции плотные контакты играют две роли.

Осуществляемый эпителиальными клетками трансклеточный транспорт (например, питательных веществ полости тонкого кишечника во внутриклеточную жидкость по другую сторону слоя) зависит от двух групп мембранных белков-переносчиков: одна находится на апикальной (обращенной в полость) поверхности клетки и активно транспортирует отдельные молекулы в клетку; другая находится на базолатеральной поверхности клетки и позволяет тем же молекулам покидать клетку путем облегченной диффузии. Для поддержания этого направленного транспорта не должно происходить перемещения апикальных белков-переносчиков на базолатеральную поверхность и наоборот.

Кроме того, промежутки между эпителиальными клетками должны быть скреплены таким образом, чтобы транспортированные молекулы не могли бы продиффундировать назад в полость через межклеточные промежутки.

Плотные контакты и выполняют эти две функции: барьеров для диффузии мембранных белков между апикальной и базолатеральной поверхностями и скрепления соседних клеток вместе так, что водорастворимые молекулы не могут перетечь на другую сторону слоя. При этом плотные контакты непроницаемы для макромолекул, а их проницаемость для малых молекул сильно варьирует в разных эпителиях. Эпителиальнные клетки могут временно модифицировать плотные контакты с тем, чтобы допустить увеличенный ток жидкости через бреши в контактных барьерах. Такой параклеточный транспорт особенно важен при абсорбции аминокислот и моносахаридов из полости тонкого кишечника.

Важнейшим элементом в структуре избирательно проницаемых барьеров эпителиальных и эндотелиальных являются плотные контакты. Избирательная проницаемость варьирует от ткани к ткани, пропуская или целые клетки и макромолекулы, или только протоны и ионы. Плотный контакт выглядит как пояс из переплетающихся скрепляющих нитей, который полностью окружает апикальный конец каждой клетки эпителиального слоя. Полагают, что скрепляющие нити состоят из длинных рядов специфических трансмембранных белков в каждой из двух взаимодействующих плазматических мембран, и которые (белки) соединяются напрямую друг с другом, что приводит к закупориванию межклеточного пространства. Интегральным мембранным белком плотного соединения оказался окклудин (взаимодействует с двумя цитоплазматическими белками, ZO-1 и ZO-2 (zonula occludence 1, 2). Их функция окончательно не ясна. Возможно, их роль заключается в локализации оккулдина в сайтах между апикальной и базолатеральной поверхностями клетки. Некоторые ассоциированные с цитоскелетом белки были также обнаружены в участках плотных контактов. Среди них зингулин, антиген и актин (по данным электронной микроскопии, актиновые филаменты состоят из двух цепей глобулярных молекул, диаметром 4 нм и образующих двойную спираль, на каждый виток которой приходится 13,5 молекулы). Эти цепи составляют основу тонких филаментов скелетных мышц, которые кроме актина содержат также несколько других белков; глобулярный актин имеет молекулярную массу около 42 кД. Он содержит одну полипептидную цепь, состоящую из 375 или 374 аминокислотных остатков; различия в аминокислотной последовательности у разных актинов, как в пределах одного вида, так и межвидовые, крайне незначительны. Они составляют не более 25 аминокислотных замен; в настоящее время у позвоночных животных различают 6 изоформ актина, в зависимости от изоэлектрической точки они делятся на 3 класса - альфа, бета и гамма; бета- и гамма-актины характерны для немышечных клеток, а альфа-актины - для мышечных). Ras играет определенную роль в регулировании функционирования плотных соединений. Таким образом, в клетках имеются, по-видимому, сходные механизмы построения и регуляции адгезионных структур, и эти механизмы тесно взаимосвязаны с изменениями в цитоскелете. Однако, каким образом перестройки цитоскелета влияют на процессы межклеточной адгезии, пока окончательно не ясно. Механизмы адгезии и межклеточной сигнализации тесно сопряжены с давно известным феноменом контактного торможения, природа которого до сих пор до конца не выяснена.

Плотный контакт

Рукопожатие весьма распространено в Поднебесной как универсальный вид приветствия; без него не обходится ни официальное начало переговоров, ни приход к вашим китайским друзьям в гости. Однако нужно помнить, что в любом случае не стоит демонстрировать вашему визави свое крепкое мужское расположение и отличную физическую форму, как это иногда принято в России: в Китае подобное может трактоваться как грубость и даже склонность к агрессии. Иными словами, действовать следует деликатно. В случае, если хочется выразить человеку особенное уважение, расположение и благодарность, вполне можно пожать его руку двумя своими, но все-таки ни в коем случае не делать это похожим на демонстрацию раздела «заломы и захваты» из боевого самбо. Аккуратнее! Сплошь и рядом рукопожатие в Китае используется и для обмена приветствиями с женщиной; если дама протягивает вам руку, не стоит строить из себя галантного старорежимного кавалера и пытаться ее целовать: встречено это будет в лучшем случае с плохо скрытым удивлением.

Если с китайской дамой вас связывают дружеские, приязненные, но не сугубо интимные отношения (интимные в данном случае?-?это не метафора), то следует воздерживаться от попыток приобнять ее при встрече и прощании или поцеловать в щечку,?-?такое воспринимается как изрядная дикость. Впрочем, есть вероятность, все более распространенная в последние годы в крупных городах, что дама по своей собственной инициативе предпримет подобные действия. Если так, то скорее всего, она: а) насмотрелась иностранных фильмов со сценами, в которых «лаоваи» поступают именно так, и очень хочет показаться «продвинутой»; б) испытывает к вам действительно теплые и дружеские чувства (не переоцените ненароком, ибо влияние фактора «а» в девяноста случаях из ста является главенствующим).

Поцелуйчики мужчин с мужчинами в Поднебесной при встрече или при прощании?-?не самая хорошая идея в любом из нескольких вариантов (то есть, например, а-ля Леонид Ильич Брежнев, а-ля «вай, братуха-борцуха-генацвале, сколько лет, сколько зим, со вчерашнего дня не виделись!», или а-ля «Христос воскрес!»), все это не вызывает ничего, кроме изумления.

Некоторые советчики, в том числе очень авторитетные в области китаеведения, любят подчеркивать, что физические действия (мы говорим о взаимодействии «мужчина?-?мужчина»: господа, даме мы уже пожали ручку, улыбнулись и на этом закончили, если это не ваша любовница, разумеется; дамы, подали ручки мужчинам и тоже завершили на этом приветствие) типа приобнять или похлопать по плечу в Китае совершенно недопустимы… Это абсолютно и решительно не соответствует никакой реальной действительности. Имеет право на существование и часто происходит и то и другое, но… Подобные действия допустимы исключительно по отношению к очень хорошо знакомым людям, которые не старше вас по возрасту и не выше по социальному (служебному) положению; во всех остальных случаях попытка слишком тесного контакта будет граничить с потерей «лица» для обеих сторон. Если же знакомство давно налажено, между вами и китайцем существуют приязненные отношения и заметной разницы в возрасте нет, то… не пугайтесь, если ваш приятель или менеджер, принимающий вас в Китае уже не в первый раз, в более-менее неформальной обстановке типа холла гостиницы или ресторана вдруг да приобнимет вас за плечи: это всего лишь выражение симпатии.

Кстати, если пройтись по улицам больших и малых населенных пунктов Китая, то можно здесь и там увидеть мужчин (преимущественно молодых), идущих друг с другом в обнимку или держась за руки. Гомосексуальность в Поднебесной, как мы с вами знаем, существует, но подобное поведение в большинстве случаев к нему отношения не имеет. Просто такова установившаяся приемлемая модель поведения, и больше ничего.

Таким образом, попытку китайца приобнять вас за редкими исключениями (если он не наряжен в платье и колготки и лицо его не носит признаков макияжа) можно и нужно считать дружественным актом, выражением расположения и приязни; в следующий раз вы при желании можете ответить ему тем же, но опять же осторожно, не перегибая палку: слишком сильный хлопок по плечу вполне может быть истолкован если не как акт агрессии, то уж точно как варварство.

Из книги Предсказание прошлого [Расцвет и гибель допотопной цивилизации] автора Никонов Александр Петрович

Глава 4 Контакт? Есть контакт! Напомню: предыдущая главка про отдельные хронологические нестыковки в официальной истории была отвлечением. А собирались мы ответить на следующий вопрос… Поскольку наблюдается поразительная схожесть в мифах разных народов, которые, как

Из книги Шаманизм автора Лойко В. Н.

Из книги Уроки чтения. Камасутра книжника автора Генис Александр Александрович

19. Контакт Антиутопию может написать каждый. В сущности, сама жизнь – антиутопия. Она начинается с любви, а кончается смертью. Поэтому наиболее радикальная утопия отменила конец совсем и навсегда. В моем пионерском детстве об этом мы, понятно, не задумывались,

Из книги Еврейский ответ на не всегда еврейский вопрос. Каббала, мистика и еврейское мировоззрение в вопросах и ответах автора Куклин Реувен

Плотный замыкающий контакт - соприкасаются билипидные слои мембран соседних клеток. В области зоны плотных контактов между клетками не проходят практически никакие вещества.

Постоянные клеточные контакты скрепляют клетки в эпителиальном клеточном слое таким образом, что предотвращается перетекание даже малых молекул с одной стороны слоя на другую. Латеральная подвижность многих мембранных белков ограничена. Ограничение подвижности достигается с помощью барьеров, образованных при участии плотных контактов.

Осуществляемый эпителиальными клетками трансклеточный транспорт (например, питательных веществ полости тонкого кишечника во внутриклеточную жидкость по другую сторону слоя) зависит от двух групп мембранных белков-переносчиков: одна находится на апикальной (обращенной в полость) поверхности клетки и активно транспортирует отдельные молекулы в клетку; другая находится на базолатеральной поверхности клетки и позволяет тем же молекулам покидать клетку путем облегченной диффузии. Для поддержания этого направленного транспорта не должно происходить перемещения апикальных белков-переносчиков на базолатеральную поверхность и наоборот.

Кроме того, промежутки между эпителиальными клетками должны быть скреплены таким образом, чтобы транспортированные молекулы не могли бы продиффундировать назад в полость через межклеточные промежутки.

Плотные контакты и выполняют эти две функции: барьеров для диффузии мембранных белков между апикальной и базолатеральной поверхностями и скрепления соседних клеток вместе так, что водорастворимые молекулы не могут перетечь на другую сторону слоя. При этом плотные контакты непроницаемы для макромолекул, а их проницаемость для малых молекул сильно варьирует в разных эпителиях. Эпителиальные клетки могут временно модифицировать плотные контакты с тем, чтобы допустить увеличенный ток жидкости через бреши в контактных барьерах. Такой параклеточный транспорт особенно важен при абсорбции аминокислот и моносахаридов из полости тонкого кишечника.

Важнейшим элементом в структуре избирательно проницаемых барьеров эпителиальных и эндотелиальных являются плотные контакты. Избирательная проницаемость варьирует от ткани к ткани, пропуская или целые клетки и макромолекулы, или только протоны и ионы. Плотный контакт выглядит как пояс из переплетающихся скрепляющих нитей, который полностью окружает апикальный конец каждой клетки эпителиального слоя. Полагают, что скрепляющие нити состоят из длинных рядов специфических трансмембранных белков в каждой из двух взаимодействующих плазматических мембран, и которые (белки) соединяются напрямую друг с другом, что приводит к закупориванию межклеточного пространства. Интегральным мембранным белком плотного соединения оказался окклудин. В клетках имеются, по-видимому, сходные механизмы построения и регуляции адгезионных структур, и эти механизмы тесно взаимосвязаны с изменениями в цитоскелете. Однако, каким образом перестройки цитоскелета влияют на процессы межклеточной адгезии, пока окончательно не ясно. Механизмы адгезии и межклеточной сигнализации тесно сопряжены с давно известным феноменом контактного торможения, природа которого до сих пор до конца не выяснена.