Основные правила амплитуды движения в упражнениях. Длина шага и амплитуда движения

Определение нужной амплитуды движения - что никоим образом не является уникальным элементом системы ДТСП - жизненно важно, как для безопасности, так и для получения желаемого эффекта от тренировки. Упражнение необходимо часто видоизменять под индивидуальные потребности. Тренировка в оптимальном положении - очень продвинутая

нижнюю и верхнюю половины туловища с применением концепций, описанных в данной книге. По мере накопления опыта эффективной работы с положением тела вы узнаете новые способы и поймете, как можно иначе последовательно увеличивать нагрузки в тренировочных программах.

техника, которая подходит лишь в случае, когда тяжелоатлет значительное время уделил подготовке и теперь ему нужно найти оптимальное положение, чтобы достичь целей тренировки.

Начав менять положение тела и плоскость движения, мы часто обнаруживаем значительные изменения в уровнях устойчивости. Чтобы выполнять более сложные движения и реализовать тренировочные концепции, а также добавить дополнительные уровни последовательности, можно незначительно менять амплитуду движения.

Хороший пример - становая тяга с выпадом в бок. Это эффективное упражнение системы ДТСП, которое учит выполнять базовые движения в разных плоскостях. Однако переход от более устойчивого положения в сагиттальной плоскости к менее устойчивой фронтальной требует хорошо развитой координации и устойчивости. Чтобы выдержать новую нагрузку на тело, мы можем начать с простого движения - небольшого шага вбок. И хотя это кажется очевидным, я часто видел, как спортсмены пытаются выполнить движение «идеально». В результате они создают такой неустойчивый момент, что им не удается качественно выполнить упражнение и получить от него хоть какую-то пользу.

Смена амплитуды движения упрощает задачу добавления последовательных этапов тренировки и привносит разнообразие в процесс, сохраняя его целенаправленность. Амплитуда движения влияет на легкость восприятия упражнения. Эту стратегию можно использовать для увеличения ощущаемой нагрузки упражнения и веса. Наглядный пример - одно из любимых базовых упражнений системы ДТСП, приседания «медвежья хватка».

Из-за нагрузки, создаваемой в положении приседания «медвежья хватка», мы часто видим, что тяжелоатлеты достигают намного более глубокого, чем обычно, положения в приседе.

Когда это удается, они тем самым расширяют амплитуду движения и повышают сложность приседаний. Это еще один способ добиться того, чтобы один и тот же вес казался тяжелее, - заставлять людей постепенно увеличивать амплитуду движения.

Другой пример - использование амплитуды движения для достижения конкретных целей. В мире такого олимпийского вида спорта, как тяжелая атлетика, спортсмены поднимают веса с разных уровней, чтобы отработать их под разными углами и развить разные навыки. А спортсмены, не занимающиеся тяжелой атлетикой, выполняя жим и тягу, поднимают веса из более высокого положения, чтобы отработать скорость нарастания силы. Попросту говоря, это скорость, при которой спортсмен способен развивать силу. Поскольку во многих видах спорта сила производится за считанные миллисекунды, великому спортсмену недостаточно просто произвести большой объем силы. Нужно быть способным сделать это как можно быстрее.

В системе упражнений ДТСП мы можем учесть этот момент, оптимизируя габариты универсального мешка с песком. По мере того как он становится тяжелее, амплитуда движений в упражнениях жим и тяга уменьшается. Это значит, что нам не обязательно увеличивать вес, чтобы усложнить упражнения по системе ДТСП или сделать акцент на развитии отдельных навыков. Простое изменение габаритов универсального мешка с песком открывает перед нами те же возможности, но с дополнительными уникальными преимуществами.

(лат. amplitude — величина) — это наибольшее отклонение колеблющегося тела от положения равновесия.

Для маятника это максимальное расстояние, на которое удаляется ша-рик от своего положения равновесия (рисунок ниже). Для колебаний с малыми амплитудами за такое расстояние можно принимать как длину дуги 01 или 02, так и длины этих отрезков.

Амплитуда колебаний измеряется в единицах длины — метрах , санти-метрах и т. д. На графике колебаний амплитуда определяется как макси-мальная (по модулю) ордината синусоидальной кривой, (см. рис. ниже).

Период колебаний.

Период колебаний — это наименьший промежуток времени, через который система, соверша-ющая колебания, снова возвращается в то же состояние, в котором она находилась в начальный момент времени, выбранный произвольно.

Другими словами, период колебаний (Т ) — это время, за которое совершается одно полное ко-лебание. Например, на рисунке ниже это время, за которое грузик маятника перемещается из крайней правой точки через точку равновесия О в крайнюю левую точку и обратно через точку О снова в крайнюю правую.

За полный период колебаний, таким образом, тело проходит путь, равный четы-рем амплитудам. Период колебаний измеряется в единицах времени — секундах , минутах и т. д. Период колебаний может быть определен по известному графику колебаний, (см. рис. ниже).

Понятие «период колебаний», строго говоря, справедливо, лишь когда значения колеблющей-ся величины точно повторяются через определенный промежуток времени, т. е. для гармоничес-ких колебаний. Однако это понятие применяется также и для случаев приблизительно повторяю-щихся величин, например, для затухающих колебаний .

Частота колебаний.

Частота колебаний — это число колебаний, совершаемых за единицу времени, например, за 1 с .

Единица частоты в СИ названа герцем (Гц ) в честь немецкого физика Г. Герца (1857-1894). Если частота колебаний (v ) равна 1 Гц , то это значит, что за каждую секунду совершается одно колебание. Частота и период колебаний связаны соотношениями:

В теории колебаний пользуются также понятием циклической , или круговой частоты ω . Она связана с обычной частотой v и периодом колебаний Т соотношениями:

.

Циклическая частота — это число колебаний, совершаемых за секунд.

Если ты бодибилдер или лифтер, то ты наверное не раз слышал, что в упражнениях амплитуда движения должна быть полной. Чем больше амплитуда - тем лучше.

Однако во время накачки мышечной массы такая тактика является ошибочной. Тут приходится применять базовые многосуставные упражнения. В таких упражнениях полная амплитуда не только не нужна, но может и принести вред. Наример, возьмем жим лежа. При доведения штанги до наивысшей точки происходит полное выпрямление локтей, а это

  1. совершенно бесполезно для груди;
  2. перегружает трицепсы, уменьшая число повторов в сете;
  3. очень травмоопасно для локтей.

Как видно, в данном случае разумно будет наоборот сократить амплитуду движения, оставляя локти в конце подъема немного согнутыми. Этот принцип относится ко всем базовым упражнениям, включая становую тягу. В тяге при работе на массу вредно полностью распрямляться, отклоняться назад для "фиксации" повторов.

Полную амплитуду оставляй для изолирующих упражнений, которые задействуют только один сустав. Хотя есть и исключения. Приведу в пример накачку рук по методике "21". Методика состоит в следующем: первые 7 повторов в сете делаешь до середины амплитуды движения, а следующие - от середины до верхней точки, и последние 7 повторений - в самой полной амплитуде движения. Эта методика настолько эффективна, что сегодня уже вытеснила обычные подъемы на бицепс.

Секрет заключается в задействовании не только бицепса при сгибании локтя, но и плечелучевой и лучевой мышцы, пролегающей под бицесом. Первая часть подъема осуществляется в основном этими мышцами. А следующая фаза - бицепсом и лучевой мышцей. Последние 7 повторов задействуют все три мышцы вместе. Понятное дело, закачка трех мышц намного действеннее одной. Рука раздувается до огромных размеров.

ПРАВИЛА АМПЛИТУДЫ ДВИЖЕНИЯ

1. Изолированные упражнения. Используй полную амплитуду движения. В верхней точке делай остановку и дополнительно статически сокращай мышцу. Если остановка тебе не по силам, значит вес слишком велик.

2. Базовые упражнения. Останавливайся за 5-8 см до верхней точки амплитуды движения. Никогда не распрямляйте рабочие суставы до конца! Аналогично, при возвращении остановись за 3-5 см до нижней точки амплитуды движения.

3. Частичные повторы применяются для повышения силы. Начни с веса, который можно поднять не больше, чем на 10-15 см. Через неделю постарайся увеличить амплитуду на 5-10 см, и так далее, пока не поддастся вся амплитуда движения. Такой прием приведет к увеличению силы мышцы на 5-8%.

14 мая

Выбор упражнений – одна из наиболее важных переменных при разработке тренировочной программы. Но упражнения с аналогичным названием могут выполняться с разной амплитудой движения в работающих суставах. При обсуждении преимуществ и недостатков техники выполнения упражнений среди специалистов часто возникают споры относительно амплитуды движения.

Краткое описание процедуры исследования

Для участия в эксперименте общей продолжительностью 12 недель привлекли 26 здоровых студентов-добровольцев (14 мужчин и 12 женщин; возраст от 18 до 26 лет), которые регулярно занимались рекреационной активностью (например, спортивными играми), но не проводили силовую тренировку ног последние 12 месяцев. Испытуемых случайным образом разделили на три группы: две группы выполняли аналогичные программы тренировок (см. таблицу 1) за исключением амплитуды движения и третья группа – контрольная (не тренировались в эти 12 недель).

Во всех упражнениях для мышц ног (различные виды приседаний, таблица 1) одна группа выполняла сгибание в коленном суставе 50º (короткая амплитуда), другая - 90º (большая амплитуда). Амплитуда сгибания контролировалась гониометром. Размер отягощения подбирался из расчёта максимального веса для выбранной амплитуды движения и уточнялся каждые 2 недели. Таким образом, в группе с короткой амплитудой движения размер отягощения был выше. Темп выполнения контролировали метрономом, по достижению необходимого угла в каждом повторении упражнений испытуемый делал остановку на 2 с, прежде чем начать концентрическую фазу движения.

Программа тренировок составлялась на основе рекомендаций Американского колледжа спортивной медицины для тренировки, увеличивающей массу мышц. Экспериментальные группы тренировались три раза в неделю: 2 раза в зале под руководством инструктора и 1 раз дома.

Изменения, произошедшие в результате тренировки, фиксировали каждые две недели эксперимента для сравнения с исходными значениями и контрольной группой. При помощи УЗИ на уровне 25, 50 и 75% от длины бедра контролировали: архитектуру мышц (длина сократительной части и угол перистости), анатомический поперечник и толщину подкожного жира. Функциональные способности оценивали на основании измерений максимального вращающего момента в коленных суставах при углах 30, 50, 60, 70, 75 и 90º (где выпрямленный коленный сустав - 0º).

Предполагалось, что в группе с большой амплитудой движения произойдут более значительное увеличение массы мышц и изменения других показателей за 8 недель тренировки, а негативные изменения от 4-недельной детренировки будут меньше.

Результаты

Как и ожидалось, в экспериментальных группах в результате 8 недель тренировок произошли статистически значимые изменения показателей, тогда как в контрольной группе изменений не отмечалось.

Анатомический поперечник мышц значительно увеличился на всех уровнях длины бедра (25, 50 и 75%) к моменту окончания тренировок. При этом в группе с большей амплитудой обнаруживалась тенденция к большему увеличению, однако статистически значимо поперечник увеличился только на уровне 75% длины бедра по сравнению с группой, которая занималась с короткой амплитудой (59% и 16%, соответственно). Интересно, что после двух недель детренировки достигнутый результат больше не отличался от контрольной группы, хотя превосходил исходный уровень и на 10 и на 12 неделе.

Угол перистости также увеличился на всех уровнях длины бедра, больше всего – на уровне 75% длины бедра, но вернулся к исходным значениям после 4 недель детренировки. И вновь проявлялась тенденция к большему увеличению в группе с большой амплитудой движения.

Длина сократительной части мышцы увеличилась на всех уровнях длины бедра и оставалась выше исходной в обеих группах, но в группе с большой амплитудой движения изменения были более значительными. Это может говорить о преимуществах большей амплитуды движения для реализации функционального потенциала мышцы, а также о том, что мышцы нетренированного человека имеют некоторую степень укорочения волокон.

Толщина подкожного жирового слоя уменьшилась к 8 неделе тренировок на всех трёх уровнях в обеих экспериментальных группах. На уровне 25% длины бедра уменьшения были большие в группе с большой амплитудой после 8 недели, но к 12 неделе они стали несущественны. На уровне 50% большее уменьшение наблюдалось в группе с большой амплитудой, и оно превосходило исходное значение даже на 12 неделе, тогда как в группе с короткой амплитудой уже на 10 неделе исходный уровень восстановился. На уровне 75% длины бедра в обеих группах произошло значительное уменьшение, которое сохранилось после 12 недели, но большее в группе с большой амплитудой.

В таблице 2 наглядно показано преимущество упражнений, которые выполняются с большей амплитудой движения для увеличения силы мышц. В группе с короткой амплитудой движения статистически значимых изменений вращающего момента не фиксировалось при углах 30, 75, и 90º. В группе с большой амплитудой зафиксированы изменения и большие по величине, и произошли они во всех контролируемых углах.

Обсуждение результатов

Наиболее важный результат исследования: выполнение различных видов приседаний с амплитудой сгибания колена на 90о приводит к более существенным морфологическим, архитектурным и функциональным изменениям в латеральной широкой мышце бедра по сравнению с амплитудой сгибания на 50º.

Авторы полагали, что большая гипертрофия скелетных мышц при амплитуде 90º произойдёт вследствие увеличения физиологического стресса и растяжения саркомеров, а увеличение массы мышц после тренировки будет существенным после периода детренировки. Результаты эксперимента подтвердили гипотезу лишь отчасти: масса мышц действительно увеличилась спустя 8 недель (больше в группе с амплитудой 90º), но это увеличение не было существенным по сравнению с контрольной группой спустя 12 недель (т.е. после 4 недель детренировки).

Расчёты показали, что в группе с короткой амплитудой движения абсолютная нагрузка была больше на 10 – 25% и оказала внешнее стрессовое воздействие выше примерно на 32%. Несмотря на это, в группе с большой амплитудой движения зафиксированы более значительные изменения. Часто в практической деятельности тренеры делают акцент именно на поднимаемом весе, жертвуя амплитудой движения с целью вызывать большую адаптационную реакцию мышц. Тем не менее, полученные данные опровергают эффективность подобной стратегии без учёта внутренней механики мышц.

Это не первое исследование влияния длины мышцы при сокращении на адаптацию. В предыдущем исследовании Kubo et al (26), сравнивали изменения, произошедшие в результате изометрической тренировки разгибателей колена под углами 50 или 100º. В их эксперименте отмечалось меньшее относительное увеличение размеров латеральной широкой мышцы. При этом в исследовании Kubo et al (26) гипертрофия была большей при тренировке с углом 50º. Вероятно, эти расхождения результатов объясняются: 1) большим в 2,3 раза максимальным произвольным усилием под углом 500 по сравнению с углом 100º; 2) различием режима работы мышц; 3) различием в гормональной реакции на глобальные и локальные упражнения; 4) специфичной региону гипертрофией.

Последний пункт нуждается в более подробном объяснении. Крупные мышцы человека способны активироваться отдельными функциональными сегментами. Так, у четырёхглавой мышцы выделяют, по крайней мере, 7 крупных сегментов, каждый из которых может выполнять свою функцию относительно обособленно от других. Это приводит к так называемой «региональной гипертрофии», которая обычно возникает при биомеханических ограничениях движения. Если рассматривать исследование Kubo et al (26), то изометрические сокращения при меньшей длине мышцы могли вызвать большее увеличение дистальной порции латеральной широкой мышцы, что и привело к расхождению между результатами исследований.

Обнаруженное увеличение сократительной части мышцы обычно связано с добавлением последовательно соединённых саркомеров в мышце при неизменной длине саркомеров. По-видимому, подобную адаптацию вызывает растягивание мышц (12, 46, 50). Результаты, полученные в обсуждаемом исследовании, подтверждают увеличение длины сократительной части мышцы в ответ на тренировку с большей амплитудой. Увеличение длины сократительной части положительно влияет на зависимость «сила-скорость мышц», позволяя спортсмену проявлять большую мощность сокращения.

В обеих экспериментальных группах зафиксировано увеличение угла перистости мышц на всех трёх уровнях длины. Больший угол перистости позволяет компактней расположить волокна мышцы. Несмотря на то, что разница между группами не достигла статистической значимости, большее увеличение угла перистости в группе с большой амплитудой отчасти объясняет обнаруженные преимущества в увеличении вращающего момента.

Отмеченное большее уменьшение подкожного жирового слоя в группе с большой амплитудой движения авторы исследования считают следствием физиологического влияния на обменные процессы. По-видимому, большая амплитуда вызывала более значительное повышение активности протеинкиназы, активированной аденозинмонофосфатом (AMPK) (9), которая, в свою очередь, опосредует влияние интерлейкина-6 на утилизацию глюкозы и окисление жиров. Кроме того, активность АМРКа2 зависит от интенсивности воздействия (7), поэтому большее удлинение мышцы может влиять на факторы, регулирующие жироотложение. Уменьшение подкожного жирового слоя помогает улучшить результаты в видах спорта, где масса тела оказывает существенное влияние на экономичность движения, например, бег на субмаксимальной скорости (8).

Вторым направлением исследования было выяснение влияния 4-недельной детренировки на результаты. Во всех измеряемых параметрах наблюдалось существенное уменьшение. Несмотря на то, что различия между группами не достигли статистической значимости, в группе с большой амплитудой движения наблюдали большие снижения биомеханических параметров мышц за период детренировки. Это согласуется с данными другого исследования. Эксперимент включал тренировки пожилых людей средней и высокой интенсивности в течение 12 недель, за которыми следовали 12 недель детренировки. Интересно отметить, что увеличение силы и поперечника мышц было существенно выше в группе, которая тренировалась интенсивно, и, несмотря на большее уменьшение в период детренировки, результаты всё равно превышали показатели группы с умеренной интенсивностью занятий (47).

Получено подтверждение, что после детренировки группа с большой амплитудой движения демонстрировала силу, превышающую исходный уровень. В группе, выполнявшей упражнения с короткой амплитудой, существенных различий в силе мышц между исходным уровнем и спустя 12 недель, не выявлено.

Авторы полагают, что увеличение амплитуды приводит к повышенной стимуляции белкового синтеза в мышцах, что, с одной стороны, приводит к большему приросту в период тренировок, а с другой – к большему уменьшению после прекращения воздействия.

Следует особо отметить, что перед началом концентрической фазы сокращения в каждом повторении испытуемые выполняли паузу в 2 секунды. Кроме того, каждое повторение с большой амплитудой выполнялось дольше на 0,25 – 0,5 с. Требуются дополнительные исследования для выяснения влияния этих факторов на адаптацию мышц.

Авторы исследования рекомендуют тренерам обращать внимание на амплитуду движения при планировании и выполнении тренировочных программ. Часто тренеры жертвуют амплитудой для обеспечения большей механической нагрузки и, как они полагают, большего стимула, но на самом деле эффект противоположный. Большая амплитуда движений предпочтительнее для увеличения силы и массы мышц даже при меньшей абсолютной нагрузке (размере отягощения). Кроме того, увеличение длины сократительной части, поперечника, угла перистости и силы мышц при разных углах положительно сказывается на функциональных способностях скелетных мышц и способствует увеличению спортивных результатов.

Увеличивать амплитуду движения следует с осторожностью. Необходимо принимать во внимание все суставы, участвующие в движении. В приведённом исследовании рассматривался только коленный сустав, тогда как для принятия окончательного решения об амплитуде приседаний необходимо учитывать функциональные способности голеностопных, тазобедренных, позвоночных и даже плечевых суставов (в случае приседания со штангой).

На основе статьи: McMahon GE, Morse CI, Burden A, Winwood K and Onambele´ GL. Impact of range of motion during ecologically valid resistance training protocols on muscle size, subcutaneous fat, and strength. J Strength Cond Res 28(1): 245–255, 2014. Обзор подготовлен экспертом FPA C. Струковым.

Для постановки правильного диагноза при травмах и патологиях костно-суставного аппарата применяется определение амплитуды движений в суставах. Такое обследование проводится с помощью различных угломеров. Нарушение или ограничение двигательных функций сочленений помогает объективно оценить степень развития заболевания или повреждения околосуставных тканей.

Что такое степень подвижности?

Определение объема движений в суставах и оценка функциональности пораженного сегмента верхних или нижних конечностей нередко осуществляется с изучения врачом степени их подвижности. Такая диагностика проводится только специалистом медицинского учреждения. Исследуя движения пораженных сочленений активного и пассивного характера, врач угломером определяет угол их максимального сгибания и разгибания в одной поверхности. Фиксирование подвижности осуществляется в воображаемой вертикальной плоскости, которая проходит спереди назад и разделяет тело человека на левую и правую части. Такое обследование дополняет клиническую картину суставного недуга, способствует постановке точного диагноза и назначению действенной терапии.

В основном измерение объема движений в крупных сочленениях рук и ног проводится гониометром на шарнире. Такой угломер, фиксирующий объем движений в плечевом суставе, складывается из 2-х браншей, объединенных специальным шарниром и полудугой со шкалой от 0° до 180°. Амплитуда движения в тазобедренном суставе или голеностопных структурах нередко меряется гониометром с 4-мя браншами, похожими на ромб.

Какая амплитуда движения в суставах считается нормой?

Сгибание и разгибание тазобедренного сустава, плечевого, локтевого или голеностопа показывает степень повреждения или поражения соединительных тканей и костных структур. Таблица показывает градусы угла размаха колебаний в норме:

Измерение объема движений голеностопа и ограничения подвижности включает только сгибание стопы подошвенное и тыльное. При этом углы подвижности сочленения равны 130° и 70° соответственно.


При анкилозе сочленение утрачивает подвижность.

Частичное ограничение или полное отсутствие активности в сочленениях называются контрактурами или . Контрактура - это ограничение пассивной подвижности, а развитие анкилоза вызывает полную неподвижность. При таком заболевании различают функционально выгодное и функционально невыгодное положение каждого элемента в суставных структурах ноги или руки.

Измерение колебаний: главные правила методики

Для изучения изменения колебания верхних и нижних конечностей от положения свободного равновесия одна бранша устройства закрепляется по оси проксимального отрезка, а другая - вдоль дистального. Очень важно, чтобы стержень шарнира совмещался с осью сочленения. При этом отсчитывать углы следует только с анатомического расположения рук или ног. Как правило, доктор изначально определяет объем активных движений, а далее - пассивных. При диагностировании или в голеностопном суставе учитывается и фиксируется ее угол. Ограничение амплитуды может быть:

  • значительным;
  • умеренным;
  • незначительным.

Для правильной оценки состоятельности ТБС нога изначально должна располагаться в одной плоскости с телом.
  • Подвижность плечевых суставов исследуется с анатомического расположения конечности, когда рука свисает. Отсчет для фиксации амплитуды колебаний движения в плечевом суставе начинается с 0.
  • Для голеностопа патологическое изменение пределов колебания меряется при положении стопы по отношению к голени под углом, который составляет 90°.
  • При выяснении ротационной подвижности бедренной кости нога размещается по оси тела, а надколенник должен быть развернут точно кпереди.
  • Для локтевого сустава изначальное положение - полноценное разгибание предплечья (180°). Для проверки его пронации и супинации следует согнуть предплечье в локте под 90° и положить кисть в сагиттальной плоскости.
  • Чтобы выяснить пределы колебания лучезапястья, закрепляется его дистальная часть по осевой черте предплечья (180°).
  • Функциональные изменения в тазобедренном суставе, коленном или кистях фиксируются при исходном положении разгибания до 180°.

Основные выводы

Оценка амплитуды движений в суставах - доступное и незатратное определение патологии, позволяющее проверить и выяснить, насколько ограничено двигательное свойство пораженных сочленений.
Неправильный объем движения, измененный угол разгибания и их сгибания, нарушение амплитуды свидетельствуют о деструктивных процессах в костно-суставной системе.