Механизм мышечного сокращения кратко. Строение и механизм сокращения скелетных мышц

Конспект лекции | Резюме лекции | Интерактивный тест | Скачать конспект

» Структурная организация скелетной мышцы
» Молекулярные механизмы сокращения скелетной мышцы
» Сопряжение возбуждения и сокращения в скелетной мышце
» Расслабление скелетной мышцы
»
» Работа скелетной мышцы
» Структурная организация и сокращение гладких мышц
» Физиологические свойства мышц

Мышечное сокращение является жизненно важной функцией организма, связанной с оборонительными, дыхательными, пищевыми, половыми, выделительными и другими физиологическими процессами. Все виды произвольных движений – ходьба, мимика, движения глазных яблок, глотание, дыхание и т. п. осуществляются за счет скелетных мышц. Непроизвольные движения (кроме сокращения сердца) – перистальтика желудка и кишечника, изменение тонуса кровеносных сосудов, поддержание тонуса мочевого пузыря – обусловлены сокращением гладких мышц. Работа сердца обеспечивается сокращением сердечной мускулатуры.

Структурная организация скелетной мышцы

Мышечное волокно и миофибрилла (рис. 1). Скелетная мышца состоит из множества мышечных волокон, имеющих точки прикрепления к костям и расположенных параллельно друг другу. Каждое мышечное волокно (миоцит) включает множество субъединиц – миофибрилл, которые построены из повторяющихся в продольном направлении блоков (саркомеров). Саркомер является функциональной единицей сократительного аппарата скелетной мышцы. Миофибриллы в мышечном волокне лежат таким образом, что расположение саркомеров в них совпадает. Это создает картину поперечной исчерченности.

Саркомер и филламенты. Саркомеры в миофибрилле отделены друг от друга Z -пластинками, которые содержат белок бета-актинин. В обоих направлениях от Z -пластинки отходят тонкие актиновые филламенты. В промежутках между ними располагаются более толстые миозиновые филламенты.

Актиновый филламент внешне напоминает две нитки бус, закрученные в двойную спираль, где каждая бусина – молекула белка актина. В углублениях актиновых спиралей на равном расстоянии друг от друга лежат молекулы белка тропонина, соединенные с нитевидными молекулами белка тропомиозина.

Миозиновые филламенты образованы повторяющимися молеку-лами белка миозина. Каждая молекула миозина имеет головку и хвост. Головка миозина может связываться с молекулой актина, образуя так называемый поперечный мостик.

Клеточная мембрана мышечного волокна образует инвагинации (поперечные трубочки), которые выполняют функцию проведения возбуждения к мембране саркоплазматического ретикулума. Саркоплазматичекий ретикулум (продольные трубочки) представляет собой внутриклеточную сеть замкнутых трубочек и выполняет функцию депонирования ионов Са++ .

Двигательная единица. Функциональной единицей скелетной мышцы является двигательная единица (ДЕ). ДЕ – совокупность мышечных волокон, которые иннервируются отростками одного мотонейрона. Возбуждение и сокращение волокон, входящих в состав одной ДЕ, происходит одновременно (при возбуждении соответствующего мотонейрона). Отдельные ДЕ могут возбуждаться и сокращаться независимо друг от друга.

Молекулярные механизмы сокращения скелетной мышцы

Согласно теории скольжения нитей, мышечное сокращение происходит благодаря скользящему движению актиновых и миозиновых филламентов друг относительно друга. Механизм скольжения нитей включает несколько последовательных событий.

• Головки миозина присоединяются к центрам связывания актинового филламента (рис. 2, А).

• Взаимодействие миозина с актином приводит к конформационным перестройкам молекулы миозина. Головки приобретают АТФазную активность и поворачиваются на 120 ° . За счет поворота головок нити актина и миозина передвигаются на «один шаг» друг относительно друга (рис. 2, Б).

• Рассоединение актина и миозина и восстановление конформации головки происходит в результате присоединения к головке миозина молекулы АТФ и ее гидролиза в присутствии Са++ (рис. 2, В).

• Цикл «связывание – изменение конформации – рассоединение – восстановление конформации» происходит много раз, в результате чего актиновые и миозиновые филламенты смещаются друг относительно друга, Z -диски саркомеров сближаются и миофибрилла укорачивается (рис. 2, Г).

Сопряжение возбуждения и сокращения в скелетной мышце

В состоянии покоя скольжения нитей в миофибрилле не происходит, так как центры связывания на поверхности актина закрыты молекулами белка тропомиозина (рис. 3, А, Б). Возбуждение (деполяризация) миофибриллы и собственно мышечное сокращение связаны с процессом элетромеханического сопряжения, который включает ряд последовательных событий.

• В результате срабатывания нейромышечного синапса на постсинаптической мембране возникает ВПСП, который генерирует развитие потенциала действия в области, окружающей постсинаптическую мембрану.

• Возбуждение (потенциал действия) распространяется по мембране миофибриллы и за счет системы поперечных трубочек достигает саркоплазматического ретикулума. Деполяризации мембраны саркоплазматического ретикулума приводит к открытию в ней Са++ -каналов, через которые в саркоплазму выходят ионы Са++ (рис. 3, В).

• Ионы Са++ связываются с белком тропонином. Тропонин изменяет свою конформацию и смещает молекулы белка тропомиозина, которые закрывали центры связывания актина (рис. 3, Г).

• К открывшимся центрам связывания присоединяются головки миозина, и начинается процесс сокращения (рис. 3, Д).

Для развития указанных процессов требуется некоторый период времени (10–20 мс). Время от момента возбуждения мышечного волокна (мышцы) до начала ее сокращения называют латентным периодом сокращения.

Расслабление скелетной мышцы

Расслабление мышцы вызывается обратным переносом ионов Са++ посредством кальциевого насоса в каналы саркоплазматического ретикулума. По мере удаления Са++ из цитоплазмы открытых центров связывания становится все меньше и в конце концов актиновые и миозиновые филламенты полностью рассоединяются; наступает расслабление мышцы.

Контрактурой называют стойкое длительное сокращение мышцы, сохраняющееся после прекращения действия раздражителя. Кратковременная контрактура может развиваться после тетанического сокращения в результате накопления в саркоплазме большого количества Са++ ; длительная (иногда необратимая) контрактура может возникать в результате отравления ядами, нарушений метаболизма.

Фазы и режимы сокращения скелетной мышцы

Фазы мышечного сокращения

При раздражении скелетной мышцы одиночным импульсом электрического тока сверхпороговой силы возникает одиночное мышечное сокращение, в котором различают 3 фазы (рис. 4, А):

• латентный (скрытый) период сокращения (около 10 мс), во время которого развивается потенциал действия и протекают процессы электромеханического сопряжения; возбудимость мышцы во время одиночного сокращения изменяется в соответствии с фазами потенциала действия;

• фаза укорочения (около 50 мс);

• фаза расслабления (около 50 мс).

Режимы мышечного сокращения

В естественных условиях в организме одиночного мышечного сокращения не наблюдается, так как по двигательным нервам, иннервирующим мышцу, идут серии потенциалов действия. В зависимости от частоты приходящих к мышце нервных импульсов мышца может сокращаться в одном из трех режимов (рис. 4, Б).

• Одиночные мышечные сокращения возникают при низкой частоте электрических импульсов. Если очередной импульс приходит в мышцу после завершения фазы расслабления, возникает серия последовательных одиночных сокращений.

• При более высокой частоте импульсов очередной импульс может совпасть с фазой расслабления предыдущего цикла сокращения. Амплитуда сокращений будет суммироваться, возникнет зубчатый тетанус – длительное сокращение, прерываемое периодами неполного расслабления мышцы.

• При дальнейшем увеличении частоты импульсов каждый следующий импульс будет действовать на мышцу во время фазы укорочения, в результате чего возникнет гладкий тетанус – длительное сокращение, не прерываемое периодами расслабления.

Оптимум и пессимум частоты

Амплитуда тетанического сокращения зависит от частоты импульсов, раздражающих мышцу. Оптимумом частоты называют такую частоту раздражающих импульсов, при которой каждый последующий импульс совпадает с фазой повышенной возбудимости (рис. 4, A) и соответственно вызывает тетанус наибольшей амплитуды. Пессимумом частоты называют более высокую частоту раздражения, при которой каждый последующий импульс тока попадает в фазу рефрактерности (рис. 4, A), в результате чего амплитуда тетануса значительно уменьшается.

Работа скелетной мышцы

Сила сокращения скелетной мышцы определяется 2 факторами:

• числом ДЕ, участвующих в сокращении;

• частотой сокращения мышечных волокон.

Работа скелетной мышцы совершается за счет согласованного изменения тонуса (напряжения) и длины мышцы во время сокращения.

Виды работы скелетной мышцы:

• динамическая преодолевающая работа совершается, когда мышца, сокращаясь, перемещает тело или его части в пространстве;

• статическая (удерживающая) работа выполняется, если благодаря сокращению мышцы части тела сохраняются в определенном положении;

• динамическая уступающая работа совершается, если мышца функционирует, но при этом растягивается, так как совершаемого ею усилия недостаточно, чтобы переместить или удержать части тела.

Во время выполнения работы мышца может сокращаться:

• изотонически – мышца укорачивается при постоянном напряжении (внешней нагрузке); изотоническое сокращение воспроизводится только в эксперименте;

• изометричеки – напряжение мышцы возрастает, а ее длина не изменяется; мышца сокращается изометрически при совершении статической работы;

• ауксотонически – напряжение мышцы изменяется по мере ее укорочения; ауксотоническое сокращение выполняется при динамической преодолевающей работе.

Правило средних нагрузок – мышца может совершить максимальную работу при средних нагрузках.

Утомление – физиологическое состояние мышцы, которое развивается после совершения длительной работы и проявляется снижением амплитуды сокращений, удлинением латентного периода сокращения и фазы расслабления. Причинами утомления являются: истощение запаса АТФ, накопление в мышце продуктов метаболизма. Утомляемость мышцы при ритмической работе меньше, чем утомляемость синапсов. Поэтому при совершении организмом мышечной работы утомление первоначально развивается на уровне синапсов ЦНС и нейро-мышечных синапсов.

Структурная организация и сокращение гладких мышц

Структурная организация. Гладкая мышца состоит из одиночных клеток веретенообразной формы (миоцитов), которые располагаются в мышце более или менее хаотично. Сократительные филламенты расположены нерегулярно, вследствие чего отсутствует поперечная исчерченность мышцы.

Механизм сокращения аналогичен таковому в скелетной мышце, но скорость скольжения филламентов и скорость гидролиза АТФ в 100–1000 раз ниже, чем в скелетной мускулатуре.

Механизм сопряжения возбуждения и сокращения. При возбуждении клетки Cа++ поступает в цитоплазму миоцита не только из саркоплазматичекого ретикулума, но и из межклеточного пространства. Ионы Cа++ при участии белка кальмодулина активируют фермент (киназу миозина), который переносит фосфатную группу с АТФ на миозин. Головки фосфорилированного миозина приобретают способность присоединяться к актиновым филламентам.

Сокращение и расслабление гладких мышц. Скорость удаления ионов Са++ из саркоплазмы значительно меньше, чем в скелетной мышце, вследствие чего расслабление происходит очень медленно. Гладкие мышцы совершают длительные тонические сокращения и медленные ритмические движения. Вследствие невысокой интенсивности гидролиза АТФ гладкие мышцы оптимально приспособлены для длительного сокращения, не приводящего к утомлению и большим энергозатратам.

Физиологические свойства мышц

Общими физиологическими свойствами скелетных и гладких мышц являются возбудимость и сократимость. Сравнительная характеристика скелетных и гладких мышц приведена в табл. 6.1. Физиологические свойства и особенности сердечной мускулатуры рассматриваются в разделе «Физиологические механизмы гомеостаза».

Таблица 7.1.Сравнительная характеристика скелетных и гладких мышц

Свойство

Скелетные мышцы

Гладкие мышцы

Скорость деполяризации

медленная

Период рефрактерности

короткий

длительный

Характер сокращения

быстрые фазические

медленные тонические

Энергозатраты

Пластичность

Автоматия

Проводимость

Иннервация

мотонейронами соматической НС

постганглионарными нейронами вегетативной НС

Осуществляемые движения

произвольные

непроизвольные

Чувствительность к химическим веществам

Способность к делению и дифференцировке

Пластичность гладких мышц проявляется в том, что они могут сохранять постоянный тонус как в укороченном, так и в растянутом состоянии.

Проводимость гладкой мышечной ткани проявляется в том, что возбуждение распространяется от одного миоцита к другому через специализированные электропроводящие контакты (нексусы).

Свойство автоматии гладкой мускулатуры проявляется в том, что она может сокращаться без участия нервной системы, за счет того, что некоторые миоциты способны самопроизвольно генерировать ритмически повторяющиеся потенциалы действия.

Все мышцы организма делят на гладкие и поперечнополосатые.

Механизмы сокращения скелетных мышц

Поперечнополосатые мышцы подразделяются на два типа: скелетные мышцы и миокард.

Строение мышечного волокна

Мембрана мышечных клеток, называемая сарколеммой, электровозбудима и способна проводить потенциал действия. Эти процессы в мышечных клетках происходят по тому же принципу, что и в нервных. Потенциал покоя мышечного волокна составляет приблизительно -90 мВ, то есть ниже, чем у нервного волокна (-70 мВ); критическая деполяризация, по достижении которой возникает потенциал действия, такая же, как у нервного волокна. Отсюда: возбудимость мышечного волокна несколько ниже возбудимости нервного, так как мышечную клетку требуется деполяризировать на большую величину.

Ответом мышечного волокна на возбуждение является сокращение , которое совершает сократительный аппарат клетки – миофибриллы . Они представляют собой тяжи, состоящие из двух видов нитей: толстых – миозиновых , и тонких – актиновых . Толстые нити (диаметром 15 нм и длиной 1,5 мкм) имеют в своем составе только один белок – миозин. Тонкие нити (диаметром 7 нм и длиной 1 мкм) содержат три вида белков: актин, тропомиозин и тропонин.

Актин представляет собой длинную белковую нить, которая состоит из отдельных глобулярных белков, сцепленных между собой таким образом, что вся структура представляет собой вытянутую цепь. Молекулы глобулярного актина (G-актина) имеют боковые и концевые центры связывания с другими такими же молекулами. В результате они объединяются таким образом, что образуют структуру, которую часто сравнивают с двумя нитками бус, соединенных вместе. Образованная из молекул G-актина лента закручена в спираль. Такая структура называется фибриллярным актином (F-актином). Шаг спирали (длина витка) составляет 38 нм, на каждый виток спирали приходится 7 пар G-актина. Полимеризация G-актина, то есть образование F-актина, происходит за счет энергии АТФ, и, наоборот, при разрушении F-актина выделяется энергия.

Рис.1. Объединение отдельных глобул G-актина в F-актин

Вдоль спиральных желобков актиновых филаментов располагается белок тропомиозин, Каждая нить тропомиозина, имеющая длину 41 нм, состоит из двух идентичных α-цепей, вместе закрученных в спираль с длиной витка 7 нм. Вдоль одного витка F-актина расположены две молекулы тропомиозина. Каждая тропомиозиновая молекула соединяется, немного перекрываясь, со следующей, в результате тропомиозиновая нить простирается вдоль актина непрерывно.

Рис.2. Строение тонкой нити миофибриллы

В клетках поперечнополосатых мышц в состав тонких нитей кроме актина и тропомиозина входит ещё и белок тропонин. Этот глобулярный белок имеет сложное строение. Он состоит из трех субъединиц, каждая из которых выполняет свою функцию в процессе сокращения.

Толстая нить состоит из большого числа молекул миозина , собранных в пучок. Каждая молекула миозина длиной 155 нм и диаметром 2 нм состоит из шести полипептидных нитей: двух длинных и четырех коротких. Длинные цепи вместе закручены в спираль с шагом 7,5 нм и образуют фибриллярную часть миозиновой молекулы. На одном из концов молекулы эти цепи раскручиваются и образуют раздвоенный конец. Каждый из этих концов образует комплекс двумя короткими цепями, то есть на каждой молекуле имеются две головки. Это глобулярная часть миозиновой молекулы.

Рис.3. Строение молекулы миозина.

В миозине выделяют два фрагмента: легкий меромиозин (ЛММ) и тяжелый меромиозин (ТММ), между ними находится шарнир. ТММ состоит из двух субфрагментов: S1 и S2. ЛММ и субфрагмент S2 вложены в пучок нитей, а субфрагмент S1 выступает над поверхностью. Этот выступающий конец (миозиновая головка) способен связываться с активным центром на актиновой нити и изменять угол наклона к пучку миозиновых нитей. Объединение отдельных молекул миозина в пучок происходит за счет электростатических взаимодействий между ЛММ. Центральная часть нити не имеет головок. Весь комплекс миозиновых молекул простирается на 1,5 мкм. Это одна из самых больших биологических молекулярных структур, известных в природе.

При рассматривании в поляризационный микроскоп продольного среза поперечнополосатой мышцы видны светлые и темные участки. Темные участки (диски) являются анизотропными: в поляризованном свете они выглядят прозрачными в продольном направлении и непрозрачными – в поперечном, обозначаются буквой А. Светлые участки являются изотропными и обозначаются буквой I. Диск I включает в себя только тонкие нити, а диск А – и толстые, и тонкие. В середине диска А видна светлая полоска, называемая Н-зоной. Она не имеет тонких нитей. Диск I разделен тонкой полосой Z, которая представляет собой мембрану, содержащую структурные элементы, скрепляющие между собой концы тонких нитей. Участок между двумя Z-линиями называется саркомером .

Рис.4. Структура миофибриллы (поперечный срез)

Рис.5. Строение поперечнополосатой мышцы (продольный срез)

Каждая толстая нить окружена шестью тонкими, а каждая тонкая нить – тремя толстыми. Таким образом, в поперечном срезе мышечное волокно имеет правильную гексагональную структуру.

Сокращение мышцы

При сокращении мышцы длина актиновых и миозиновых филаментов не изменяется. Происходит лишь их смещение относительно друг друга: тонкие нити задвигаются в промежуток между толстыми. При этом длина диска А остается неизменной, а диск I укорачивается, полоска Н почти исчезает. Такое скольжение оказывается возможным благодаря существованию поперечных мостиков (миозиновых головок) между толстыми и тонкими нитями. При сокращении возможно изменение длины саркомера приблизительно от 2,5 до 1,7 мкм.

Миозиновая нить имеет на себе множество головок, которыми она может связываться с актином. Актиновая же нить, в свою очередь, имеет участки (активные центры), к которым могут прикрепляться головки миозина. В покоящейся мышечной клетке эти центры связывания прикрыты молекулами тропомиозина, что препятствует образованию связи между тонкими и толстыми нитями.

Для того чтобы актин и миозин могли взаимодействовать, необходимо присутствие ионов кальция. В покое они находятся в саркоплазматическом ретикулуме. Эта органелла представляет собой мембранные полости, содержащие кальциевый насос, который за счет энергии АТФ транспортирует ионы кальция внутрь саркоплазматического ретикулума. Его внутренняя поверхность содержит белки, способные связывать Ca2+, что несколько уменьшает разность концентраций этих ионов между цитоплазмой и полостью ретикулума. Распространяющийся по клеточной мембране потенциал действия активирует близко расположенную к поверхности клетки мембрану ретикулума и вызывает выход Ca2+ в цитоплазму.

Молекула тропонина обладает высоким сродством к кальцию.

Под его влиянием она изменяет положение тропомиозиновой нити на актиновой таким образом, что открывается активный центр, ранее прикрытый тропомиозином. К открывшемуся активному центру присоединяется поперечный мостик. Это приводит к взаимодействию актина с миозином. После образования связи миозиновая головка, ранее расположенная под прямым углом к нитям, наклоняется и протаскивает актиновую нить относительно миозиновой приблизительно на 10 нм. Образовавшийся атин-миозиновый комплекс препятствует дальнейшему скольжению нитей относительно друг друга, поэтому необходимо его разъединение. Это возможно только за счет энергии АТФ. Миозин обладает АТФ-азной активностью, то есть способен вызывать гидролиз АТФ. Выделяющаяся при этом энергия разрывает связь между актином и миозином, и миозиновая головка способна взаимодействовать с новым участком молекулы актина. Работа мостиков синхронизирована таким образом, что связывание, наклон и разрыв всех мостиков одной нити происходит одновременно. При расслаблении мышцы активизируется работа кальциевого насоса, что понижает концентрацию Ca2+ в цитоплазме; следовательно, связи между тонкими и толстыми нитями уже не могут образовываться. В этих условиях при растяжении мышцы нити беспрепятственно скользят относительно друг друга. Однако такая растяжимость возможна только в присутствии АТФ. Если в клетке отсутствует АТФ, то актин-миозиновый комплекс не может разорваться. Нити остаются жестко сцепленными между собой. Это явление наблюдается при трупном окоченении.

Рис.6. Сокращение саркомера: 1 – миозиновая нить; 2 – активный центр; 3 – актиновая нить; 4 – миозиновая головка; 5 — Z-линия.

а) взаимодействие между тонкими и толстыми нитями отсутствует;

б) в присутствии Ca2+ миозиновая головка связывается с активным центром на актиновой нити;

в) поперечные мостики наклоняются и протаскивают тонкую нить относительно толстой, вследствие чего длина саркомера уменьшается;

г) связи между нитями разрываются за счет энергии АТФ, миозиновые головки готовы взаимодействовать с новыми активными центрами.

Существует два режима сокращения мышцы: изотоническое (изменяется длина волокна, а напряжение остается неизменным) и изометрическое (концы мышцы неподвижно закреплены, вследствие чего изменяется не длина, а напряжение).

Мощность и скорость сокращения мышцы

Важными характеристиками мышцы являются сила и скорость сокращения. Уравнения, выражающие эти характеристики, были эмпирически получены А.Хиллом и впоследствии подтверждены кинетической теорией мышесного сокращения (модель Дещеревского).

Уравнение Хилла , связывающее между собой силу и скорость сокращения мышцы, имеет следующий вид: (P+a)(v+b) = (P0+a)b = a(vmax+b) , где v – скорость укорочения мышцы; P – мышечная сила или приложенная к ней нагрузка; vmax — максимальная скорость укорочения мышцы; P0 — сила, развиваемая мышцей в изометрическом режиме сокращения; a,b — константы. Общая мощность , развиваемая мышцей, определяется по формуле: Nобщ = (P+a)v = b(P0-P) . КПД мышцы сохраняет постоянное значение (около 40% ) в диапазоне значений силы от 0,2 P0 до 0,8 P0. В процессе сокращения мышцы выделяется некоторое количество теплоты. Эта величина называется теплопродукцией . Теплопродукция зависит только от изменения длины мышцы и не зависит от нагрузки. Константы a и b имеют постоянные значения для данной мышцы. Константа а имеет размерность силы, а b – скорости. Константа b в значительной степени зависит от температуры. Константа а находится в диапазоне значений от 0,25 P0 до 0,4 P0. По этим данным оценивается максимальная скорость сокращения для данной мышцы: vmax = b (P0 / a) .

Характеристика мышечной ткани.

Сокращение скелетной мышцы и его механизмы

Виды мышечной ткани. Актино-миозиновый комплекс и механизмы его функционирования.

Существует 3 вида животных тканей 1)мыщечная, 2) нервная, 3) секреторная. Первая отвечает на возбуждение сокращением и осуществлением работы перемещения. Вторые – способностью проводить и анализировать импульсы, третьи – выделять различные секреты.

Различают 3 вида мышечной ткани: 1. поперечно-полосатая, 2. гладкая, 3.сердечная.

Характеристики поперчно-полосатая гладкая сердечная
специализация очень высокая наименее специализ. средняя специализ.
строение длинные до 10 см волокна, разделены на субъединицы — саркомеры. Волокна соединены между собой соединительной тканью, кровеносными сосудами. К волокнам подходят нервные окончания, образующие нервно- мышечные соединения Состоит из отдельных веретеноподобн. кл., соединенных в пучки. Клетки на концах разветвляются, соединяются др. с др. помощью отростков.
ядро Несколько ядер у переферии 1 ядро в центе несколько ядер в центре
цитоплазма содержит митохондрии, саркоплазм. ретикулум, Т трубки, гликоген, жировые капли сод. митохондр., саркоплазм. ретикулум, Ттрубки, сод. митохондр., саркоплазм. ретикулум, Т трубки,
сарколемма есть нет есть
регуляция нейрогенная нейрогенная нейрог. и гуморальная
поперечные полосы есть нет есть
Активность соединения. мощные, быстрые сокращения. Период рефрактерности мал- время отдыха мало.быстрое уставание. медленный ритм быстрый ритм, большое рефрактерное время -нет усталости.

Актино-миозиновый комплекс. Все мышечные кл. содержат большое количество специальных сократительных белков — их 60-80% от общего количества белков мышц. Главными сократительными

белками являются фибриллярные белки: — миозин — образует толстые нити; — актин — образует тонкие нити. Для регуляции сокращения используются глобулярные белки: тропонин-тропомиозин.

Миозин — 2-х цепочечная структура 1=180 нм и 0=2,5 нм. Актин — 2-х спиральная пептидная цепь.

Механизм сокращения: Актин и миозин в фибрилле пространственно разделены. Нервный импульс вызываетвыделение ацетилхолина в синапртическую щель нервно-мышечного соединения. Это

вызывает деполяризацию постсинаптической мембраны после связывания медиатора и

распространения потенциала действия по клеточным мембранам и внутрь мышечного

волокна по Т трубкам. В результате взаимодействия актин-миозин происходит сокращение фибрилл. Это достигается за счет проталкивания головкой миозина актиновой нити в результате образования мостика. Когда импульс исчезает Са2+ восстанавливается, мостик между актином и миозином разрушается и мышца возвращается в исходное состояние.

Тропонин — глобулярный белок, имеющий 3 центра:

— Т — связывает с тропомиозином

— С — связывает Са2+

— 1 — ингибирует взаимодействие актин-миозин.

Фазы сокращения:

1. Латентный период — 0,05 сек.

2. Фаза сокращения — 0,1 сек

3. Период расслабления — 0,2 сек.

Биохимия работы мышц

1. АТФ + миозин-актиновый комплекс——-АДФ + Миозин + актин + Ф + энергия

2. АДФ + креатинин-фосфат——АТФ + креатин

3. Гликоген—Глюкоза ——Глюкоза + О2—-СО2 + Н2О + 38 АТФ (аэробный процесс)

4. Глюкоза—-2 молочная кислота + 2 АТФ (анаэробный процесс-разлр.нервн. оконч.-

5. Молочная к-та + О2—СО2 + Н2О (отдых) или Мол.к-та—глюкоза—гликоген.

Механизм сокращения скелетной мышцы

Укорочение мышцы является результатом сокращения множества саркомеров. При укорочении актиновые нити скользят относительно миозиновых, в результате чего длина каждого саркомера мышечного волокна уменьшается. При этом длина самих нитей остается неизменной. Миозиновые нити имеют поперечные выступы (поперечные мостики) длиной около 20 нм. Каждый выступ состоит из головки, которая соединена с миозиновой нитью посредством «шейки» (рис. 23).

При расслабленном состоянии мышцы головки поперечных мостиков не могут взаимодействовать с актиновыми нитями, поскольку их активные участки (места взаимного контакта с головками) изолированы тропомиозином. Укорочение мышцы является результатом конформационных изменений поперечного мостика: его головка совершает наклон с помощью сгибания «шейки».

Рис. 23. Ространственная организация сократительных и регуляторных белков в исчерченной мышце. Показано положение миозинового мостика (гребковый эффект, шейка согнута) в процессе взаимодействия сократительных белков в мышечных волокне (сокращение волокна)

Последовательность процессов, обеспечивающих сокращение мышечного волокна (электромеханическое сопряжение):

1. После возникновения ПД в мышечном волокне вблизи синапса (за счет электрического поля ПКП) возбуждение распространяется по мембране миоцита , в том числе по мембранам поперечных Т-трубочек . Механизм проведения ПД по мышечному волокну такой же, как и по безмиелиновому нервному волокну - возникший ПД вблизи синапса посредством своего электрического поля обеспечивает возникновение новых ПД в соседнем участке волокна и т.д. (непрерывное проведение возбуждения).

2. Потенциал действия Т-трубочек за счет своего электрического поля активирует потенциалуправляемые кальциевые каналы на мембране СПР , вследствие чего Са2+ выходит из цистерн СПР согласно электрохимическому градиенту.

3. В межфибриллярном пространстве Са2+ контактирует с тропонином , что приводит к его конформации и смещению тропомиозина, в результате чего на нитях актина обнажаются активные участки , с которыми соединяются головки миозиновых мостиков.

4. В результате взаимодействия с актином АТФазная активность головок миозиновых нитей усиливается , обеспечивая освобождение энергии АТФ, которая расходуется на сгибание миозинового мостика, внешне напоминающего движение весел при гребле (гребковое движение) (см. рис. 23), обеспечивающее скольжение актиновых нитей относительно миозиновых . На совершение одного гребкового движения расходуется энергия одной молекулы АТФ. При этом нити сократительных белков смещаются на 20 нм. Присоединение новой молекулы АТФ к другому участку головки миозина ведет к прекращению зацепления ее, но при этом энергия АТФ не расходуется. При отсутствии АТФ головки миозина не могут оторваться от актина - мышца напряжена; таков, в частности, механизм трупного окоченения.

5. После этого головки поперечных мостиков в силу своей эластичности возвращаются в исходное положение и устанавливают контакт со следующим участком актина ; далее вновь происходит очередное гребковое движение и скольжение актиновых и миозиновых нитей. Подобные элементарные акты многократно повторяются. Одно гребковое движение (один шаг) вызывает уменьшение длины каждого саркомера на 1%. При сокращении изолированной мышцы лягушки без нагрузки 50% укорочение саркомеров происходит за 0,1 с. Для этого необходимо совершение 50 гребковых движений.

Механизм мышечного сокращения

Миозиновые мостики сгибаются асинхронно, но в связи с тем, что их много и каждая миозиновая нить окружена несколькими актиновыми нитями, сокращение мышцы происходит плавно.

Расслабление мышцы происходит благодаря процессам, протекающим в обратной последовательности. Реполяризация сарколеммы и Т-трубочек ведет к закрытию кальциевых потенциалуправляемых каналов мембраны СПР. Са-насосы возвращают Са2+ в СПР (активность насосов возрастает при увеличении концентрации свободных ионов).

Снижение концентрации Са2+ в межфибриллярном пространстве вызывает обратную конформацию тропонина, в результате чего тропомиозиновые нити изолируют активные участки актиновых филаментов, что делает невозможным взаимодействие с ними головок поперечных мостиков миозина. Скольжение актиновых нитей вдоль миозиновых в обратном направлении происходит под действием сил гравитации и эластической тяги элементов мышечного волокна, что восстанавливает исходные размеры саркомеров.

Источником энергии для обеспечения работы скелетных мышц является АТФ, расходы которой значительны. Даже в условиях основного обмена на функционирование мускулатуры организм затрагивает около 25% всех своих энергоресурсов. Затраты энергии резко возрастают во время выполнения физической работы.

Запасы АТФ в мышечном волокне незначительны (5 ммоль/л) и могут обеспечить не более 10 одиночных сокращений.

Расход энергии АТФ необходим для осуществления следующих процессов.

Во-первых, энергия АТФ расходуется на обеспечение работы Nа/К-насоса (он поддерживает градиент концентрации Na+ и К+ внутри и вне клетки, формирующих ПП и ПД, обеспечивающего электромеханическое сопряжение) и работы Са-насоса, который понижает концентрацию Са2+ в саркоплазме по-сле сокращения мышечного волокна, что приводит к расслаблению.

Во-вторых, энергия АТФ расходуется на гребковое движение миозиновых мостиков (сгибание их).

Ресинтез АТФ осуществляется с помощью трех энергетических систем организма.

1. Фосфогенная энергетическая система обеспечивает ресинтез АТФ за счет имеющегося в мышцах высокоэнергоемкого КФ и образовавшейся при расщеплении АТФ аденозиндифосфорной кислоты (аденозиндифосфат, АДФ) с образованием креатина (К): АДФ + + КФ → АТФ + К. Это мгновенный ресинтез АТФ, при этом мышца может развивать большую мощность, но кратковременно - до 6 с, поскольку запасы КФ в мышце ограниченны.

2. Анаэробная гликолитическая энергетическая система обеспечивает ресинтез АТФ за счет энергии анаэробного расщепления глюкозы до молочной кислоты. Этот путь ресинтеза АТФ является быстрым, но тоже кратковременным (1-2 мин), так как накопление молочной кислоты тормозит активность гликолитических ферментов. Однако лактат, вызывая местный сосудорасширяющий эффект, улучшает кровоток в работающей мышце и снабжение ее кислородом и питательными веществами.

3. Аэробная энергетическая система обеспечивает ресинтез АТФ с помощью окислительного фосфорилирования углеводов и жирных кислот , протекающего в митохондриях мышечных клеток. Этот способ может обеспечить энергией работу мышц в течение нескольких часов и является основным способом энергетического обеспечения работы скелетных мышц.

Виды мышечных сокращений

В зависимости от характера сокращений мышцы различают три их вида: изометрическое, изотоническое и ауксотоническое .

Ауксотоническое сокращение мышцы заключается в одновременном изменении длины и напряжения мышцы. Этот вид сокращения характерно для натуральных двигательных актов и бывает двух видов: эксцентрическое, когда напряжение мышцы сопровождается ее удлинением - например, в процессе приседания (опускания), и концентрическое, когда напряжение мышцы сопровождается ее укорочением - например, при разгибании нижних конечностей после приседания (подъем).

Изометрическое сокращение мышцы - когда напряжение мышцы возрастает, а длина ее не изменяется. Этот вид сокращения можно наблюдать в эксперименте, когда оба конца мышцы зафиксированы и отсутствует возможность их сближения, и в естественных условиях - например, в процессе приседания и фиксации положения.

Изотоническое сокращение мышцы заключается в укорочении мышцы при ее постоянном напряжении. Этот вид сокращения возникает, когда сокращается ненагруженная мышца с одним закрепленным сухожилием, не поднимая (не перемещая) никакого внешнего груза либо поднимая груз без ускорения.

В зависимости от длительности сокращений мышцы выделяют два их вида: одиночное и тетаническое.

Одиночное сокращение мышцы возникает при однократном раздражении нерва или самой мышцы. Обычно мышца укорачивается на 5-10% от исходной длины. На кривой одиночного сокращения выделяют три основных периода: 1) латентный - время от момента нанесения раздражения до начала сокращения; 2) период укорочения (или развития напряжения) ; 3) период расслабления . Продолжительность одиночных сокращений мышц человека вариабельна. Например, у камбаловидной мышцы она составляет 0,1 с. В латентный период возникает возбуждение мышечных волокон и его проведение вдоль мембраны. Соотношения длительности одиночного сокращения мышечного волокна, его возбуждения и фазовые изменения возбудимости мышечного волокна показаны на рис. 24.

Длительность сокращения мышечного волокна значительно дольше таковой ПД потому, что необходимо время на работу Са-насосов для возвращения Са2+ в СПР и окружающую среду и большей инерционности механических процессов по сравнению с электрофизиологическими.

Рис. 24. Соотношение времени возникновения ПД (А) и одиночного сокращения (Б) медленного волокна скелетной мышцы теплокровного. Стрелка – момент нанесения раздражения. Время сокращения быстрых волокон в несколько раз короче

Тетаническое сокращение - это длительное сокращение мышцы, возникающее под действием ритмического раздражения, когда каждое последующее раздражение или нервные импульсы поступают к мышце, пока она еще не расслабилась. В основе тетанического сокращения лежит явление суммации одиночных мышечных сокращений (рис. 25) - увеличение амплитуды и длительности сокращения при нанесении на мышечное волокно или целую мышцу двух и более быстро следующих друг за другом раздражений.

Рис. 25. Суммация сокращений икроножной мышцы лягушки: 1 – кривая одиночного сокращения в ответ на первое раздражение расслабленной мышцы; 2 – кривая одиносного сокращения той же мышцы в ответ на второе раздражние; 3 – кривая суммированного сокращения, полученного в результате спаренного раздражения сокращающейся мышцы (обозначено стрелками )

При этом раздражения должны поступать в период предыдущего сокращения. Увеличение амплитуды сокращений объясняется увеличением концентрации Са2+ в гиалоплазме при повторном возбуждении мышечных волокон, поскольку Са-помпа не успевает возвращать его в СПР. Са2+ обеспечивает увеличение числа зон зацепления миозиновых мостиков с нитями актина.

Если повторные импульсы или раздражения поступают в фазу расслабления мышц, возникает зубчатый тетанус . Если повторные раздражения приходятся на фазу укорочения, возникает гладкий тетанус (рис. 26).

Рис. 26. Сокращение икроножной мышцы лягушки при различной частоте раздражения седалищного нерва: 1 – одиночное сокращение (частота 1 Гц); 2,3 – зубчатый тетанус (15-20 Гц); 4,5 – гладкий тетанус (25-60 Гц); 6 – расслабление при пессимальной частоте раздражения (120 Гц)

Амплитуда сокращения и величина напряжения, развиваемые мышечными волокнами при гладком тетанусе, обычно в 2-4 раза больше, чем при одиночном сокращении. Тетаническое сокращение мышечных волокон, в отличие от одиночных сокращений, быстрее вызывает их утомление.

При возрастании частоты стимуляции нерва или мышцы амплитуда гладкого тетануса увеличивается. Максимальный тетанус получил название оптимума. Увеличение тетануса объясняется накоплением Са2+ в гиалоплазме. При дальнейшем увеличении частоты стимуляции нерва (около 100 Гц) мышца расслабляется вследствие развития блока проведения возбуждения в нервно-мышечных синапсах - пессимум Введенского (частота раздражения пессимальная ) (см. рис. 26). Пессимум Введенского можно получить и при прямом, но более частом раздражении мышцы (около 200 имп./с), однако при этом для чистоты эксперимента следует заблокировать нервно-мышечные синапсы. Если после возникновения пессимума уменьшить частоту стимуляции до оптимальной, то амплитуда мышечного сокращения мгновенно возрастает - свидетельство того, что пессимум не является результатом утомления мышцы или истощением энергетических ресурсов.

В естественных условиях отдельные мышечные волокна чаще сокращаются в режиме зубчатого тетануса, однако сокращение целой мышцы напоминает гладкий тетанус, вследствие асинхронности их сокращения.

рис. 2.4. Электрическое раздражение и мышечный ответ. Сверху показаны электрические импульсы, снизу - ответ мышцы

Если стимулировать коротким электрическим импульсом, спустя небольшой латентный период происходит ее . Такое сокращение называется «одиночное сокращение мышцы». Одиночное мышечное сокращение длится около 10-50 мс, причем оно достигает максимальной силы через 5-30 мс.

Каждое отдельное мышечное волокно подчиняется закону «все или ничего», т. е. при силе раздражения выше порогового уровня происходит полное сокращение с максимальной для данного волокна силой, а ступенчатое повышение силы сокращения по мере увеличения силы раздражения невозможно. Поскольку смешанная мышца состоит из множества волокон с различным уровнем чувствительности к возбуждению, сокращение всей мышцы может быть ступенчатым в зависимости от силы раздражения, при этом при сильных раздражениях происходит активация глубжележащих мышечных волокон.

Суперпозиция и тетанус

Однократное электрическое раздражение (рис. 2.4, вверху) ведет к единичному мышечному сокращению (рис. 2.4, внизу). Два близко друг за другом следующих раздражения накладываются друг на друга (это называется «суперпозиция», или суммация сокращений), что ведет к более сильному мышечному ответу, близкому к максимальному. Серия часто повторяющихся электрических раздражений вызывает возрастающие по силе мышечные сокращения, в результате чего не происходит должного расслабления мышцы. Если частота электрических импульсов выше частоты слияния, то единичные раздражения сливаются в одно и вызывают тетанус мышцы (тетаническое сокращение) - устойчивое достаточно длительное напряжение сокращенной мышцы.

Формы сокращений

Рис. 2.5. Формы мышечных сокращений. Слева схематически представлено укорочение саркомеров, в середине - изменения силы и длины, справа - пример сокращений

Выделяют различные функциональные формы мышечных сокращений (рис. 2.5).

  • При изотоническом сокращении мышца укорачивается, однако ее внутреннее напряжение (тонус!) остается неизменным во всех фазах рабочего цикла. Типичным примером изотонического мышечного сокращения является динамическая мышечная работа сгибателей и разгибателей без существенных изменений внутримышечного напряжения, например подтягивание.
  • При изометрическом сокращении мышечная длина не изменяется, а сила мышцы проявляется в повышении ее напряжения. Типичным примером изометрического сокращения является статическая мышечная активность при поднимании тяжестей (удерживание штанги).
  • Чаще всего наблюдаются комбинированные варианты сокращения мышц. Например, комбинированное сокращение, при котором мышцы сначала сокращаются изометрически, а затем изотонически, как при поднятии тяжести, называют удерживающим сокращением .
  • Установочным (изготовочным) называют сокращение, при котором, наоборот, после начального изотонического сокращения следует изометрическое. Примером является ротационное движение руки с рычагом - затягивание винта с помощью гаечного ключа или отвертки.
  • Различные формы мышечных сокращений выделяют для их описания и систематизации. На самом деле в большинстве динамических спортивных движений происходит как укорочение мышцы, так и повышение напряжения (тонуса) мышц - ауксотонические сокращения .

Использованные здесь термины нетипичны для русской литературы по мышечной активности. В отечественной литературе принято выделять следующие типы сокращений.

  • Концентрическое сокращение - вызывающее укорачивание мышцы и перемещение места прикрепления ее к кости, при этом движение конечности, обеспечиваемое сокращением данной мышцы, направлено против преодолеваемого сопротивления, например силы тяжести.
  • Эксцентрическое сокращение - возникает при удлинении мышцы во время регулирования скорости движения, вызванного другой силой, или в ситуации, когда максимального усилия мышцы не хватает для преодоления противодействующей силы. В результате движение происходит в направлении воздействия внешней силы.
  • Изометрическое сокращение - усилие, противодействующее внешней силе, при котором длина мышцы не изменяется и движения в суставе не происходит.
  • Изокинетическое сокращение - сокращение мышцы с одинаковой скоростью.
  • Баллистическое движение - быстрое движение, включающее: а) концентрическое движение мышц-агонистов в начале движения; б) инерционное движение во время минимальной активности; в) эксцентрическое сокращение для замедления движения.

Механизм скольжения филаментов

рис. 2.6 Схема образования поперечных связей - молекулярной основы сокращения саркомера

Укорочение мышцы происходит за счет укорочения образующих ее саркомеров, которые, в свою очередь, укорачиваются за счет скольжения относительно друг друга актиновых и миозиновых филаментов (а не укорочения самих белков). Теория скольжения филаментов была предложена учеными Huxley и Hanson (Huxley, 1974; рис. 2.6). (В 1954 г. две группы исследователей - X. Хаксли с Дж. Хэнсон и А. Хаксли с Р. Нидергерке - сформулировали теорию, объясняющую мышечное сокращение скольжением нитей. Независимо друг от друга они обнаружили, что длина диска А оставалась постоянной в расслабленном и укороченном саркомере. Это позволило предположить, что есть два набора нитей - актиновые и миозиновые, причем одни входят в промежутки между другими, и при изменении длины саркомера эти нити каким-то образом скользят друг по другу. Сейчас эта гипотеза принята почти всеми.)

Актин и миозин - два сократительных белка, которые способны вступать в химическое взаимодействие, приводящее к изменению их взаимного расположения в мышечной клетке. При этом цепочка миозина прикрепляется к актиновой нити с помощью целого ряда особых «головок», каждая из которых сидит на длинной пружинистой «шее». Когда происходит сцепление между миозиновой головкой и актиновой нитью, конформация комплекса этих двух белков изменяется, миозиновые цепочки продвигаются между актиновыми нитями и мышца в целом укорачивается (сокращается). Однако, чтобы химическая связь между головкой миозина и активной нитью образовалась, необходимо подготовить этот процесс, поскольку в спокойном (расслабленном) состоянии мышцы активные зоны белка актина заняты другим белком - тропохмиозином, который не позволяет актину вступить во взаимодействие с миозином. Именно для того, чтобы убрать тропомиозиновый «чехол» с актиновой нити, требуется быстрое выливание ионов кальция из цистерн саркоплазматического ретикулума, что происходит в результате прохождения через мембрану мышечной клетки потенциала действия. Кальций изменяет конформацию молекулы тро-помиозина, в результате чего активные зоны молекулы актина открываются для присоединения головок миозина. Само это присоединение осуществляется с помощью так называемых водородных мостиков, которые очень прочно связывают две белковые молекулы - актин и миозин - и способны в таком связанном виде находиться очень долго.

Для отсоединения миозиновой головки от актина необходимо затратить энергию аденозинтрифосфа-та (АТФ), при этом миозин выступает в роли АТФазы (фермента, расщепляющего АТФ). Расщепление АТФ на аденозиндифосфат (АДФ) и неорганический фосфат (Ф) высвобождает энергию, разрушает связь между актином и миозином и возвращает головку миозина в исходное положение. В дальнейшем между актином и миозином могут снова образовываться поперечные связи.

При отсутствии АТФ актин-миозиновые связи не разрушаются. Это и является причиной трупного окоченения (rigor mortis) после смерти, т. к. останавливается выработка АТФ в организме - АТФ предотвращает мышечную ригидность.

Даже при мышечных сокращениях без видимого укорочения (изометрические сокращения, см. выше) активируется цикл формирования поперечных связей, мышца потребляет АТФ и выделяет тепло. Головка миозина многократно присоединяется на одно и то же место связывания актина, и вся система миофиламентов остается неподвижной.

Внимание : Сократительные элементы мышц актин и миозин сами по себе не способны к укорочению. Мышечное укорочение является следствием взаимного скольжения миофиламентов относительно друг друга (механизм скольжения филаментов).

Как же образование поперечных связей (водородных мостиков) переходит в движение? Одиночный саркомер за один цикл укорачивается приблизительно на 5-10 нм, т.е. примерно на 1 % своей общей длины. За счет быстрого повторения цикла поперечных связей возможно укорочение на 0,4 мкм, или 20% своей длины. Поскольку каждая миофибрилла состоит из множества саркомеров и во всех них одновременно (но не синхронно) образуются поперечные связи, суммарно их работа приводит к видимому укорочению всей мышцы. Передача силы этого укорочения происходит через Z-линии миофибрилл, а также концы сухожилий, прикрепленных к костям, в результате чего и возникает движение в суставах, через которые мышцы реализуют перемещение в пространстве частей тела или продвижение всего тела.

Связь между длиной саркомера и силой мышечных сокращений

Рис. 2.7. Зависимость силы сокращений от длины саркомера

Наибольшую силу сокращений мышечные волокна развивают при длине 2-2,2 мкм. При сильном растяжении или укорочении саркомеров сила сокращений снижается (рис. 2.7). Эту зависимость можно объяснить механизмом скольжения филаментов: при указанной длине саркомеров наложение миозиновых и актиновых волокон оптимально; при большем укорочении миофиламенты перекрываются слишком сильно, а при растяжении наложение миофиламентов недостаточно для развития достаточной силы сокращений.

рис. 2.9 Влияние предварительного растяжения на силу сокращения мышцы. Предварительное растяжение повышает напряжение мышцы. Результирующая кривая, описывающая взаимоотношения длины мышцы и силы ее сокращения при воздействии активного и пассивного растяжения, демонстрирует более высокое изометрическое напряжение, чем в покое

Важным фактором, влияющим на силу сокращений, является величина растяжения мышцы. Тяга за конец мышцы и натяжение мышечных волокон называются пассивным растяжением. Мышца обладает эластическими свойствами, однако в отличие от стальной пружины зависимость напряжения от растяжения не линейна, а образует дугообразную кривую. С увеличением растяжения повышается и напряжение мышцы, но до определенного максимума. Кривая, описывающая эти взаимоотношения, называется кривой растяжения в покое .

Данный физиологический механизм объясняется эластическими элементами мышцы - эластичностью сарколеммы и соединительной ткани, располагающимися параллельно сократительным мышечным волокнам.

Также при растяжении изменяется и наложение друг на друга миофиламентов, однако это не оказывает влияния на кривую растяжения, т. к. в покое не образуются поперечные связи между актином и миозином. Предварительное растяжение (пассивное растяжение) суммируется с силой изометрических сокращений (активная сила сокращений).

Которые различаются клеточной и тканевой организацией, иннервацией и в определенной степени механизмами функционирования. В то же время в молекулярных механизмах мышечного сокращения между этими типами мышц есть много общего.

Скелетные мышцы

Скелетная мускулатура является активной частью опорно-двигательного аппарата. В результате сократительной деятельности поперечно-полосатых мышц осуществляются:

  • передвижение тела в пространстве;
  • перемещение частей тела относительно друг друга;
  • поддержание позы.

Кроме того, один из результатов мышечного сокращения — выработка тепла.

У человека, как и у всех позвоночных, волокна скелетных мышц обладают четырьмя важнейшими свойствами:

  • возбудимость — способность отвечать на раздражитель изменениями ионной проницаемости и мембранного потенциала;
  • проводимость - способность к проведению потенциала действия вдоль всего волокна;
  • сократимость — способность сокращаться или изменять напряжение при возбуждении;
  • эластичность - способность развивать напряжение при растягивании.

В естественных условиях возбуждение и сокращение мышц вызываются нервными импульсами, поступающими к мышечным волокнам из нервных центров. Чтобы вызвать возбуждение в эксперименте, применяют электрическую стимуляцию.

Непосредственное раздражение самой мышцы называется прямым раздражением; раздражение двигательного нерва, ведущее к сокращению иннервированной этим нервом мышцы (возбуждение нейромоторных единиц), — непрямым раздражением. Ввиду того что возбудимость мышечной ткани ниже, чем нервной, приложение электродов раздражающего тока непосредственно к мышце еще не обеспечивает прямого раздражения: ток, распространяясь по мышечной ткани, действует в первую очередь на находящиеся в ней окончания двигательных нервов и возбуждает их, что ведет к сокращению мышц.

Типы сокращения

Изотонический режим — сокращение, при котором мышца укорачивается без формирования напряжения. Такое сокращение возможно при пересечении или разрыве сухожилия или в эксперименте на изолированной (удаленной из организма) мышце.

Изометрический режим — сокращение, при котором напряжение мышцы возрастает, а длина практически не уменьшается. Такое сокращение наблюдается при попытке поднять непосильный груз.

Ауксотонический режим - сокращение, при котором длина мышцы изменяется по мере увеличения ее напряжения. Такой режим сокращений наблюдается при осуществлении трудовой деятельности человека. Если напряжение мышцы возрастает при ее укорочении, то такое сокращение называют концентрическим, а в случае увеличении напряжения мышцы при ее удлинении (например, при медленном опускании груза) - эксцентрическим сокращением.

Виды мышечных сокращений

Выделяют два вида мышечных сокращений: одиночное и тетаническое.

При раздражении мышцы одиночным стимулом возникает одиночное мышечное сокращение, в котором выделяют следующие три фазы:

  • фаза латентного периода — начинается от начала действия раздражителя и до начала укорочения;
  • фаза сокращения (фаза укорочения) — от начала сокращения до максимального значения;
  • фаза расслабления — от максимального сокращения до начальной длины.

Одиночное мышечное сокращение наблюдается при поступлении к мышце короткой серии нервных импульсов моторных нейронов. Его можно вызвать воздействием на мышцу очень коротким (около 1 мс) электрическим стимулом. Сокращение мышцы начинается через временной промежуток до 10 мс от начала воздействия раздражителя, который и называют латентным периодом (рис. 1). Затем развиваются укорочение (длительность около 30-50 мс) и расслабление (50-60 мс). На весь цикл одиночного мышечного сокращения затрачивается в среднем 0,1 с.

Длительность одиночного сокращения у разных мышц может сильно варьировать и зависит от функционального состояния мышцы. Скорость сокращения и особенно расслабления замедляется при развитии утомления мышцы. К быстрым мышцам, имеющим кратковременное одиночное сокращение, относятся наружные мышцы глазного яблока, век, среднего уха и др.

При сопоставлении динамики генерации потенциала действия на мембране мышечного волокна и его одиночного сокращения видно, что потенциал действия всегда возникает раньше и лишь затем начинает развиваться укорочение, которое продолжается и после окончания реполяризации мембраны. Вспомним, что длительность фазы деполяризации потенциала действия мышечного волокна составляет 3-5 мс. В течение этого промежутка времени мембрана волокна находится в состоянии абсолютной рефрактерности, за которой следует восстановление се возбудимости. Поскольку длительность укорочения составляет около 50 мс, то очевидно, что еще во время укорочения мембрана мышечного волокна должна восстанавливать возбудимость и будет способна отвечать на новое воздействие сокращением на фоне еще незавершенного. Следовательно, на фоне развивающегося сокращения в мышечных волокнах на их мембране можно вызвать новые циклы возбуждения и следующие за ними суммирующиеся сокращения. Такое суммирующееся сокращение получило название тетанического (тетанус). Его можно наблюдать в одиночном волокне и целой мышце. Однако механизм тетанического сокращения в естественных условиях в целой мышце имеет особенности.

Рис. 1. Временные соотношения одиночных циклов возбуждения и сокращения волокна скелетной мышцы: а — соотношение потенциала действия, выхода Са 2+ в саркоплазму и сокращения: 1 — латентный период; 2 — укорочение; 3 — расслабление; б — соотношение потенциала действия, возбудимости и сокращения

Тетанусом называют сокращение мышцы, возникающее в результате суммирования сокращений ее моторных единиц, вызванных поступлением к ним множества нервных импульсов от моторных нейронов, иннервирующих данную мышцу. Суммирование усилий, развиваемых при сокращении волокон множества двигательных единиц, способствует увеличению силы тетанического сокращения мышцы и влияет на длительность сокращения.

Различают зубчатый и гладкий тетанус. Для наблюдения в эксперименте зубчатого тетануса мышцы ее стимулируют импульсами электрического тока с такой частотой, чтобы каждый последующий стимул наносился после фазы укорочения, но еще до окончания расслабления. Гладкое тетаническое сокращение развивается при более частых раздражениях, когда последующие воздействия наносятся во время развития укорочения мышцы. Например, если фаза укорочения мышцы составляет 50 мс, фаза расслабления — 60 мс, то для получения зубчатого тетануса необходимо раздражать эту мышцу с частотой 9-19 Гц, для получения гладкого — с частотой не менее 20 Гц.

Для демонстрации различных видов тетануса обычно используют графическую регистрацию на кимографе сокращений изолированной икроножной мышцы лягушки. Пример такой кимограммы представлен на рис. 2.

Если сравнивать амплитуды и усилия, развиваемые при различных режимах сокращения мышцы, то они при одиночном сокращении минимальны, увеличиваются при зубчатом тетанусе и становятся максимальными при гладком тетаническом сокращении. Одной из причин такого возрастания амплитуды и силы сокращения является то, что увеличение частоты генерации ПД на мембране мышечных волокон сопровождается увеличением выхода и накоплением в саркоплазме мышечных волокон ионов Са 2+ , способствующего большей эффективности взаимодействия между сократительными белками.

Рис. 2. Зависимость амплитуды сокращения от частоты раздражения (сила и длительность стимулов неизменны)

При постепенном увеличении частоты раздражения нарастание силы и амплитуды сокращения мышцы идет лишь до определенного предела — оптимума ответной реакции. Частоту раздражения, вызывающую наибольший ответ мышцы, называют оптимальной. Дальнейшее увеличение частоты раздражения сопровождается уменьшением амплитуды и силы сокращения. Это явление называют пессимумом ответной реакции, а частоты раздражения, превышающие оптимальную величину — пессимальными. Явления оптимума и пессимума были открыты Н.Е. Введенским.

В естественных условиях частота и режим посылки моторными нейронами нервных импульсов к мышце обеспечивают асинхронное вовлечение в процесс сокращения большего или меньшего (в зависимости от числа активных мотонейронов) количества двигательных единиц мышцы и суммацию их сокращений. Сокращение целостной мышцы в организме но своему характеру близко к гладкотеганическому.

Для характеристики функциональной активности мышц оценивают показатели их тонуса и сокращения. Тонусом мышцы называют состояние длительного непрерывного напряжения, вызванное попеременным асинхронным сокращением ее моторных единиц. При этом видимое укорочение мышцы может отсутствовать из-за того, что в процесс сокращения вовлекаются не все, а лишь те двигательные единицы, свойства которых наилучшим образом приспособлены к поддержанию тонуса мышцы и силы их асинхронного сокращения недостаточно для укорочения мышцы. Сокращения таких единиц при переходе от расслабления к напряжению или при изменении степени напряжения называют тоническими. Кратковременные сокращения, сопровождаемые изменением силы и длины мышцы, называют физическими.

Механизм мышечного сокращения

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат-миофибриллы (рис. 3). Кроме этого, важнейшими компонентами мышечного волокна являются митохондрии, системы продольных трубочек — саркоплазматический ретикулум и система поперечных трубочек - Т-система.

Рис. 3. Строение мышечного волокна

Функциональной единицей сократительного аппарата мышечной клетки является саркомер, из саркомеров состоит миофибрилла. Саркомеры отделяются друг от друга Z-пластинками (рис. 4). Саркомеры в миофибрилле расположены последовательно, поэтому сокращения capкомеров вызывают сокращение миофибриллы и общее укорочение мышечного волокна.

Рис. 4. Схема строения саркомера

Изучение структуры мышечных волокон в световом микроскопе позволило выявить их поперечную исчерченносгь, которая обусловлена особой организацией сократительных белков протофибрилл — актина и миозина. Актиновые филаменты представлены двойной нитью, закрученной в двойную спираль с шагом около 36,5 нм. Эти филаменты длиной 1 мкм и диаметром 6-8 нм, количество которых достигает около 2000, одним концом прикреплены к Z-пластинке. В продольных бороздках актиновой спирали располагаются нитевидные молекулы белка тропомиозина. С шагом, равным 40 нм, к молекуле тропомиозина прикреплена молекула другого белка - тропонина.

Тропонин и тропомиозин играют (см. рис. 3) важную роль в механизмах взаимодействия актина и миозина. В середине саркомера между нитями актина располагаются толстые нити миозина длиной около 1,6 мкм. В поляризационном микроскопе эта область видна в виде полоски темного цвета (вследствие двойного лучепреломления) - анизотропный А-диск. В центре его видна более светлая полоска H. В состоянии покоя в ней нет актиновых нитей. По обе стороны А- диска видны светлые изотропные полоски - I-диски , образованные нитями актина.

В состоянии покоя нити актина и миозина незначительно перекрывают друг друга таким образом, что общая длина саркомера составляет около 2,5 мкм. При электронной микроскопии в центре H -полоски обнаружена М-линия - структура, которая удерживает нити миозина.

При электронной микроскопии видно, что на боковых сторонах миозиновой нити обнаруживаются выступы, получившие название поперечных мостиков. Согласно современным представлениям, поперечный мостик состоит из головки и шейки. Головка приобретает выраженную АТФазную активность при связывании с актином. Шейка обладает эластическими свойствами и представляет собой шарнирное соединение, поэтому головка поперечного мостика может поворачиваться вокруг своей оси.

Использование современной техники позволило установить, что нанесение электрического раздражения на область Z -пластинки приводит к сокращению саркомера, при этом размер зоны диска А не изменяется, а величина полосок Н и I уменьшается. Эти наблюдения свидетельствовали о том, что длина миозиновых нитей не изменяется. Аналогичные результаты были получены при растяжении мышцы — собственная длина актиновых и миозиновых нитей не изменялась. В результате экспериментов выяснилось, что изменялась область взаимного перекрытия актиновых и миозиновых нитей. Эти факты позволили X. и А. Хаксли предложить теорию скольжения нитей для объяснения механизма мышечного сокращения. Согласно этой теории при сокращении происходит уменьшение размера саркомера вследствие активного перемещения тонких актиновых нитей относительно толстых миозиновых.

Рис. 5. А — схема организации саркоплазматического ретикулума, поперечных трубочек и миофибрилл. Б — схема анатомической структуры поперечных трубочек и саркоплазматического ретикулума в индивидуальном волокне скелетной мышцы. В — роль саркоплазматического ретикулума в механизме сокращения скелетной мышцы

В процессе сокращения мышечного волокна в нем происходят следующие преобразования:

электрохимическое преобразование:

  • генерация ПД;
  • распространение ПД по T-системе;
  • электрическая стимуляция зоны контакта T-системы и саркоплазматического ретикулума, активация ферментов, образование инозитолтрифосфата, повышение внутриклеточной концентрации ионов Са 2+ ;

хемомеханическое преобразование:

  • взаимодействие ионов Са 2+ с тропонином, изменение конфигурации тропомиозина, освобождение активных центров на актиновых филаментах;
  • взаимодействие миозиновой головки с актином, вращение головки и развитие эластической тяги;
  • скольжение нитей актина и миозина относительно друг друга, уменьшение размера саркомера, развитие напряжения или укорочение мышечного волокна.

Передача возбуждения с двигательного мотонейрона на мышечное волокно происходите помощью медиатора ацетилхолина (АХ). Взаимодействие АХ с холинорецептором концевой пластинки приводит к активации АХ-чувствительных каналов и появлению потенциала концевой пластинки, который может достигать 60 мВ. При этом область концевой пластинки становится источником раздражающего тока для мембраны мышечного волокна и на участках клеточной мембраны, прилегающих к концевой пластинке, возникает ПД, который распространяется в обе стороны со скоростью примерно 3-5 м/с при температуре 36 °С. Таким образом, генерация ПД является первым этапом мышечного сокращения.

Вторым этапом является распространение ПД внутрь мышечного волокна по поперечной системе трубочек, которая служит связующим звеном между поверхностной мембраной и сократительным аппаратом мышечного волокна. Г-система тесно контактирует с терминальными цистернами саркоплазматической сети двух соседних саркомеров. Электрическая стимуляция места контакта приводит к активации ферментов, расположенных в месте контакта, и образованию инозитолтрифосфата. Инозитолтрифосфат активирует кальциевые каналы мембран терминальных цистерн, что приводит к выходу ионов Са 2+ из цистерн и повышению внутриклеточной концентрации Са 2+ " с 10 -7 до 10 -5 . Совокупность процессов, приводящих к повышению внутриклеточной концентрации Са 2+ , составляет сущность третьего этапа мышечного сокращения. Таким образом, на первых этапах происходит преобразование электрического сигнала ПД в химический — повышение внутриклеточной концентрации Са 2+ т.е. электрохимическое преобразование (рис. 6).

При повышении внутриклеточной концентрации ионов Са 2+ происходит их связывание с тропонином, который изменяет конфигурацию тропомиозина. Последний смешается в желобок межу нитями актина; при этом на актиновых нитях открываются участки, с которыми могут взаимодействовать поперечные мостики миозина. Это смещение тропомиозина обусловлено изменением формации молекулы белка тропонина при связывании Са 2+ . Следовательно, участие ионов Са 2+ в механизме взаимодействия актина и миозина опосредовано через тропонин и тропомиозин. Таким образом, четвертым этапом электромеханического сопряжения является взаимодействие кальция с тропонином и смещение тропомиозина.

На пятом этапе электромеханического сопряжения происходит присоединение головки поперечного мостика миозина к мостикуактина — к первому из нескольких последовательно расположенных стабильных центров. При этом миозиновая головка поворачивается вокруг своей оси, поскольку имеет несколько активных центров, которые последовательно взаимодействуют с соответствующими центрами на актиновом филаменте. Вращение головки приводит к увеличению упругой эластической тяги шейки поперечного мостика и увеличению напряжения. В каждый конкретный момент в процессе развития сокращения одна часть головок поперечных мостиков находится в соединении с актиновым филаментом, другая свободна, т.е. существует последовательность их взаимодействия с актиновым филаментом. Это обеспечивает плавность процесса сокращения. На четвертом и пятом этапах происходит хемомеханическое преобразование.

Рис. 6. Электромеханические процессы в мышце

Последовательная реакция соединения и разъединения головок поперечных мостиков с актиновым филаментом приводит к скольжению тонких и толстых нитей относительно друг друга и уменьшению размеров саркомера и общей длины мышцы, что является шестым этапом. Совокупность описанных процессов составляет сущность теории скольжения нитей (рис. 7).

Первоначально полагали, что ионы Са 2+ служат кофактором АТФазной активности миозина. Дальнейшие исследования опровергли это предположение. У покоящейся мышцы актин и миозин практически не обладают АТФазной активностью. Присоединение головки миозина к актину приводит к тому, что головка приобретает АТФазную активность.

Рис. 7. Иллюстрация теории скользящих нитей:

А. а — мышца в покое: А. 6 — мышца при сокращении: Б. а. б — последовательное взаимодействие активных центров миозиновой головки с центрами на активной нити

Гидролиз АТФ в АТФазном центре головки миозина сопровождается изменением конформации последней и переводом ее в новое, высокоэнергетическое состояние. Повторное присоединение миозиновой головки к новому центру на актиновом филаменте вновь приводит к вращению головки, которое обеспечивается запасенной в ней энергией. В каждом цикле соединения и разъединения головки миозина с актином расщепляется одна молекула АТФ на каждый мостик. Быстрота вращения определяется скоростью расщепления АТФ. Очевидно, что быстрые фазические волокна потребляют значительно больше АТФ в единицу времени и сохраняют меньше химической энергии во время тонической нагрузки, чем медленные волокна. Таким образом, в процессе хемомеханического преобразования АТФ обеспечивает разъединение головки миозина и акгинового филамента и энергетику для дальнейшего взаимодействия головки миозина с другим участком актинового филамента. Эти реакции возможны при концентрации кальция выше 10 -6 М.

Описанные механизмы укорочения мышечного волокна позволяют предположить, что для расслабления в первую очередь необходимо понижение концентрации ионов Са 2+ . Экспериментально было доказано, что саркоплазматическая сеть имеет специальный механизм — кальциевый насос, который активно возвращает кальций в цистерны. Активация кальциевого насоса осуществляется неорганическим фосфатом, который образуется при гидролизе АТФ. а энергообеспечение работы кальциевого насоса — также за счет энергии, образующейся при гидролизе АТФ. Таким образом, АТФ является вторым важнейшим фактором, абсолютно необходимым для процесса расслабления. Некоторое время после смерти мышцы остаются мягкими вследствие прекращения тонического влияния мотонейронов. Затем концентрация АТФ снижается ниже критического уровня и возможность разъединения головки миозина с актиновым филаментом исчезает. Возникает явление трупного окоченения с выраженной ригидностью скелетных мышц.

Функциональное значение АТФ при сокращении скелетной мускулатуры
  • Гидролиз АТФ под действием миозина, в результате поперечные мостики получают энергию для развития тянущего усилия
  • Связывание АТФ с миозином, ведущее к отсоединению поперечных мостиков, прикрепленных в актину, что создает возможность повторения цикла их активности
  • Гидролиз АТФ (под действием Са 2+ -АТФазы) для активного транспорта ионов Са 2+ в латеральные цистерны саркоплазматического ретикулума, снижающий уровень цитоплазматического кальция до исходного уровня

Суммация сокращений и тетанус

Если в эксперименте на отдельное мышечное волокно или всю мышцу действуют два быстро следующих друг за другом сильных одиночных раздражения, то возникающие сокращения будут иметь большую амплитуду, чем максимальное сокращение при одиночном раздражении. Сократительные эффекты, вызванные первым и вторым раздражениями, как бы складываются. Это явление называется суммацией сокращений (рис. 8). Оно наблюдается как при прямом, так и непрямом раздражении мышцы.

Для возникновения суммации необходимо, чтобы интервал между раздражениями имел определенную длительность: он должен быть длиннее рефрактерного периода, в противном случае на второе раздражение не будет ответа, и короче всей длительности сократительного ответа, чтобы второе раздражение подействовало на мышцу раньше, чем она успеет расслабиться после первого раздражения. При этом возможны два варианта: если второе раздражение поступает, когда мышца уже начала расслабляться, то на миографической кривой вершина этого сокращения будет отделена от вершины первого западением (рис 8, Ж-Г); если же второе раздражение действует, когда первое еще не дошло до своей вершины, то второе сокращение полностью сливается с первым, образуя единую суммированную вершину (рис 8, А-В).

Рассмотрим суммацию в икроножной мышце лягушки. Продолжительность восходящей фазы ее сокращения примерно 0,05 с. Поэтому для воспроизведения на этой мышце первого типа суммации сокращений (неполная суммация) необходимо, чтобы интервал между первым и вторым раздражениями был больше 0,05 с, а для получения второго типа суммации (так называемая полная суммация) — меньше 0,05 с.

Рис. 8. Суммация мышечных сокращений 8 ответ на два стимула. Отметка времени 20 мс

Как при полной, так и при неполной суммации сокращений потенциалы действия не суммируются.

Тетанус мышцы

Если на отдельное мышечное волокно или на всю мышцу действуют ритмические раздражения с такой частотой, что их эффекты суммируются, наступает сильное и длительное сокращение мышцы, называемое тетаническим сокращением , или тетанусом.

Амплитуда его может быть в несколько раз больше величины максимального единичного сокращения. При относительно малой частоте раздражений наблюдается зубчатый тетанус , при большой частоте - гладкий тетанус (рис. 9). При тетанусе сократительные ответы мышцы суммированы, а электрические ее реакции — потенциалы действия — не суммируются (рис. 10) и их частота соответствует частоте ритмического раздражения, вызвавшего тетанус.

После прекращения тетанического раздражения волокна полностью расслабляются, их исходная длина восстанавливается лишь по истечении некоторого времени. Это явление называется послететанической, или остаточной, контрактурой.

Чем быстрее сокращаются и расслабляются волокна мышцы, тем чаще должны быть раздражения, чтобы вызвать тетанус.

Утомление мышцы

Утомлением называется временное понижение работоспособности клетки, органа или целого организма, наступающее в результате работы и исчезающее после отдыха.

Рис. 9. Тетанус изолированного мышечного волокна (по Ф.Н. Серкову):

а — зубчатый тетанус при частоте раздражения 18 Гц; 6 — гладкий тетанус при частоте раздражения 35 Гц; М — миограмма; Р — отметка раздражения; В — отметка времени 1 с

Рис. 10. Одновременная запись сокращения (а) и электрической активности (6) скелетной мышцы кошки при тетаническом раздражении нерва

Если длительно раздражать ритмическими электрическими стимулами изолированную мышцу, к которой подвешен небольшой груз, то амплитуда ее сокращений постепенно убывает до нуля. Регистрируемую при этом запись сокращений называют кривой утомления.

Понижение работоспособности изолированной мышцы при ее длительном раздражении обусловлено двумя основными причинами:

  • во время сокращения в мышце накапливаются продукты обмена веществ (фосфорная, молочная кислоты и др.), оказывающие угнетающее действие на работоспособность мышечных волокон. Часть этих продуктов, а также ионы калия диффундируют из волокон наружу в околоклеточное пространство и оказывают угнетающее влияние на способность возбудимой мембраны генерировать потенциалы действия. Если изолированную мышцу, помещенную в небольшой объем жидкости Рингера, длительно раздражая, довести до полного утомления, то достаточно только сменить омывающий ее раствор, чтобы восстановились сокращения мышцы;
  • постепенное истощение в мышце энергетических запасов. При длительной работе изолированной мышцы резко уменьшаются запасы гликогена, вследствие чего нарушается процесс ресинтеза АТФ и креатинфосфата, необходимый для осуществления сокращения.

И.М. Сеченов (1903) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза ускоряется, если в период отдыха производить работу другой рукой. Временное восстановление работоспособности мышц утомленной руки может быть достигнуто и при других видах двигательной активности, например при работе мышц нижних конечностей. В отличие от простого покоя такой отдых был назван И.М. Сеченовым активным. Он рассматривал эти факты как доказательство того, что утомление развивается прежде всего в нервных центрах.

Как только в мышечное волокно перестают поступать нервные импульсы, ионы Са^ под действием так называемого кальциевого насоса за счет энергии АТФ уходят в цистерны саркоплазматического ретикулюма и их концентрация в саркоплазме понижается до исходного уровня. Это вызывает изменения конформации тропонина, который, фиксируя тропомиозин в определенном участке актиновых нитей, делает невозможным образование поперечных мостиков между толстыми и тонкими нитями. За счет упругих сил, возникающих при мышечном сокращении в коллагеновых нитях, окружающих мышечное волокно, оно при расслаблении возвращается в исходное состояние. Таким образом, процесс мышечного расслабления, или релаксации, так же, как и процесс мышечного сокращения, осуществляется с использованием энергии гидролиза АТФ.

В ходе мышечной деятельности в мышцах поочередно происходят процессы сокращения и расслабления и, следовательно, скоростно-силовые качества мышц в равной мере зависят от скорости мышечного сокращения и от способности мышц к релаксации .


ЗАКЛЮЧЕНИЕ

Рассмотрев понятия «мускулатура» и «мышечное сокращение» можно сделать ряд выводов.

Мышечное волокно является многоядерной структурой, окруженной мембраной и содержащей специализированный сократительный аппарат - миофибриллы.

В процессе мышечного сокращения потенциальная химическая энергия переходит в потенциальную механическую энергию напряжения и кинетическую энергию движения. Основой всех типов мышечного сокращения служит взаимодействие примеактина и миозина.

В скелетных мышцах за сокращение отвечают миофибриллырно две трети сухого веса мышц). Сокращение происходит при увеличении концентрации в цитоплазме ионов Ca 2+ в результате скольжения миозиновых филаментов относительно актиновых.

Непосредственным источником энергии для мышечного сокращения является расщепление высокоэнергетического вещества АТФ. В мышце происходит также промежуточная реакция, вовлекающая 2-ое высокоэнергетическое вещество – креатинфосфат (КФ). Оно не может действовать как непосредственный источник энергии, поскольку его расщепление не оказывает влияние на сократительные белки мышцы. КФ обеспечивает энергией ресинтез АТФ. В свою очередь, энергия для ресинтеза КФ обеспечивается окислением.



Сокращение мышечного волокна заключается в укорочении миофибрилл в пределах каждого саркомера. Толстые (миозиновые) и тонкие (актиновые) нити, в расслабленном состоянии связанные только концевыми отделами, в момент сокращения осуществляют скользящие движения навстречу друг другу. Выделение необходимой для сокращения энергии происходит в результате превращения АТФ в АДФ под влиянием миозина. Ферментная активность миозина проявляется при условии оптимального содержания Са2+, которые накапливаются в саркоплазматической сети.

Весь процесс от появления мышечного потенциала действия до сокращения мышечного волокна называется электромеханической связью (или электромеханическим сопряжением).

КПД мышечной клетки около 50 %, мышцы в целом не более 20%. Максимальная сила мышц не достигается в реальных условиях; не все клетки мышцы используются одновременно и сокращаются с максимальной силой, иначе при сокращении многих скелетных мышц будут повреждены сухожилия или кости (что иногда и наблюдается при сильных судорогах). КПД мышцы также зависит от внешних условий; например, на холоде он значительно снижается, так как для организма важнее сохранить температуру тела.

В динамическом режиме работоспособность мышцы определяется скоростью расщепления и ресинтеза АТФ. При этом скорость расщепления АТФ может увеличиваться в 100 раз и более. Ресинтез АТФ может обеспечиваться за счет окислительного расщепления глюкозы. Действительно, при умеренных нагрузках ресинтез АТФ обеспечивается повышенным потреблением мышцами глюкозы и кислорода. Это сопровождается увеличением кровотока через мышцы примерно в 20 раз, увеличением минутного объема сердца и дыхания в 2-3 раза. У тренированных лиц (например, спортсмена) большую роль в обеспечении повышенной потребности организма в энергии играет повышение активности митохондриальных ферментов.

При максимальной физической нагрузке происходит дополнительное расщепление глюкозы путем анаэробного гликолиза. Во время этих процессов ресинтез АТФ осуществляется в несколько раз быстрее и механическая работа, производимая мышцами также больше, чем при аэробном окислении. Предельное время для такого рода работы составляет около 30 с, после чего возникает накопление молочной кислоты, т. е. метаболический ацидоз, и развивается утомление.

Анаэробный гликолиз имеет место и в начале длительной физической работы, пока не увеличится скорость окислительного фосфорилирования таким образом, чтобы ресинтез АТФ вновь сравнялся с его распадом. После метаболической перестройки спортсмен обретает как бы второе дыхание. Подробные схемы метаболических процессов приведены в руководствах по биохимии.

Основа сокращения мышцы - биохимические процессы, которые совершаются в 2 фазы: первую, анаэробную (бескислородную), и вторую, аэробную (кислородную). В каждой из этих фаз происходит расщепление веществ с освобождением энергии и их восстановление (ресинтез). Поэтому мышца, лишенная кислорода, может долго работать при условии удаления остаточных продуктов обмена веществ.

В ходе мышечной деятельности в мышцах поочередно происходят процессы сокращения и расслабления и, следовательно, скоростно-силовые качества мышц в равной мере зависят от скорости мышечного сокращения и от способности мышц к релаксации.


ГЛОССАРИЙ

Актин - белок мышечных волокон, участвующий в сократительных процессах в клетке. Содержится преимущественно в клетках мускульных тканей.

АТФ – аденилпирофосфорная кислота, нуклеотид, содержащий аденин, рибозу и три остатка фосфорной кислоты, универсальный переносчик и

основной аккумулятор химической энергии в живых клетках, выделяющейся при переносе электронов в дыхательной цепи.

Афферентное волокно – центростремительное нервное волокно (отростки нервных клеток), по которым возбуждение передается от тканей к ЦНС.

Гладкие мышцы – сократимая ткань, состоящая из клеток и не имеющая поперечной исчерчённости.

Дефосфолирирование - отщепление остатка фосфорной кислоты от молекулы фосфорсодержащего соединения.

Кинестезия – ощущение положения и движения отдельных частей тела, сопротивления и тяжести внешних предметов.

Миозин - белок мышечных волокон; образует с актином основной сократительный элемент мышц актомиозин.

Миофибрилл - органеллы клеток поперечнополосатых мышц, обеспечивающие их сокращение, служащие для сокращений мышечных волокон.

Мышечное сокращение - реакция мышечных клеток на воздействие нейромедиатора, реже гормона, проявляющаяся в уменьшении длины клетки.

Мышечные ткани - ткани, различные по строению и происхождению, но сходные по способности к выраженным сокращениям, состоящие из вытянутых клеток, которые принимают раздражение от нервной системы и отвечают на него сокращением.

Мыщцы - органы тела животных и человека, состоящие из упругой, эластичной мышечной ткани, способной сокращаться под влиянием нервных импульсов, предназначенные для выполнения различных действий: движения тела, сокращения голосовых связок, дыхания.

Персинаптическая мембрана – участок поверхностной мембраны нервного волокна, через который медиатор выделяется в синаптическую щель; структурный элемент синапса.

Постсинаптическая мембрана – у толщенная поверхностная мембрана клетки в области синапса, обладающая чувствительностью к медиатору.

Релаксация - состояние покоя, расслабленности, возникающее у субъекта следствие снятия напряжения, после сильных переживаний или физических усилий.

Ресинтез - процесс обратного восстановления исходного сложного химического соединения из «осколков», образовавшихся при его распаде или метаболизме.

Синапс - место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой.

Фосфорилирование - процесс переноса остатка фосфорной кислоты от фосфорилируущего агента-донора.

ЦНС – центральная нервная система

Эфферентное волокно – центробежные нервные волокна по которым возбуждение передаётся от ЦНС (от клетки) к тканям.


СПИСОК ЛИТЕРАТУРЫ

1. Физическая культура студента: Учебник / Под ред. В.И. Ильинича. М.: Гардарики, 2000. - 448 с.

2. Физическая культура. Серия «Учебники, учебные пособия». Ростов-н/Д: Феникс, 2003. - 384 с

3. www.wikipedia.ru

В основе мышечного сокращения лежит перемещение нитей актина относительно нитей миозина. Нити актина двигаются, как по туннелю, между миозиновыми фибриллами, за счет образования связей с миозином. В результате этого сарко- мер укорачивается (гипотеза «скользящих нитей» А. Хаксли) (рис. 7.29). При этом длина 1-дисков уменьшается, А-диски сохраняют свой размер.

Скольжение актиновых и миозиновых нитей друг относительно друга возможно только в присутствии ионов Са 2+ и АТФ, которая образуется при расщеплении гликогена, глюкозы и жирных кислот. Мышцы характеризуются активным обменом веществ. К ним подходит большое количество кровеносных и лимфатических сосудов, а также нервов. Последние образуют с мышечными волокнами синаптические контакты.

Всю цепь событий при мышечном сокращении можно представить следующим образом: в нервно-мышечном синапсе под влиянием приходящих из ЦНС но нервному волокну импульсов выделяется медиатор ацетилхолин , деполяризующий мембрану мышечного волокна. Возникающий при этом импульс распространяется по мембране волокна и Т-трубочкам и передается на мембрану саркоплазматического ретикулума, из которого в саркоплазму выходит кальций. Ионы кальция способствуют образованию комплекса акто- миозина и расщеплению АТФ; освобождающаяся при этом энергия обеспечивает скольжение тонких актиновых нитей вдоль миозиновых.

Рис. 7.29.

Изменение взаиморасположения миофибрилл при расслаблении (б) и сокращении (в) мышечного волокна

Расслабление мышцы связано с обратным поступлением Са 2+ в саркоплазматический ретикулум, что происходит при участии активных механизмов, связанных с работой ионных насосов. Если концентрация ионов кальция в саркоплазме снижается и они перекачиваются в эндоплазматическую сеть, то сокращение мышечного волокна прекращается.

Скелетная мускулатура человека состоит из мышечных волокон нескольких типов с различными структурно-функциональными характеристиками. Выделяют четыре основных типа мышечных волокон: медленные фазические волокна окислительного типа, быстрые фазические волокна окислительного типа, быстрые фазические окислительные волокна с гликолитическим типом окисления и тонические волокна.

Медленные фазические мышечные волокна окислительного типа содержат большое количество белка миоглобина, связывающего 0 2 . Этот белок аналогичен гемоглобину эритроцитов и придает мышечным волокнам темно-красную окраску. Мышцы, состоящие преимущественно из этих волокон, участвуют в поддержании позы человека. Утомление в них развивается очень медленно, а восстанавливаются функции очень быстро.

Мышцы, состоящие преимущественно из быстрых фази- ческих волокон окислительного типа , выполняют быстрые сокрашения без заметного утомления. Это связано с наличием в волокнах большого количества митохондрий и хорошей способностью синтезировать АТФ. Основное назначение таких волокон - выполнение быстрых, энергичных движений.

Тонические волокна сокращаются и расслабляются медленно, так как активность АТФ в них низка. Такие волокна входят в состав некоторых мышц глаза.

Большинство скелетных мышц человека состоит из мышечных волокон различных типов с преобладанием одного из них в зависимости от функций, которые выполняет та или иная мышца.

Основное физиологическое свойство мышц - сократимость - проявляется в способности мышцы к укорачиванию или развитию напряжения. Различают два типа мышечных сокращений - изотонические и изометрические. При изотоническом сокращении волокна мышцы укорачиваются, но напряжение остается постоянным. При изометрическом - мышца укоротиться не может, длина мышечных волокон остается неизменной, так как оба се конца неподвижно закреплены, но напряжение по мере их сокращения возрастает.

По отношению к целому организму применяется иная классификация типов сокращения: изометрическим называют сокращение, при котором длина мышцы не меняется, концентрическим - при котором мышца укорачивается, эксцентрическим - удлиняется (например, при медленном опускании груза). Для естественных движений обычно характерны все три типа сокращения мышц.

Функциональной единицей скелетной мускулатуры считается не отдельное мышечное волокно, а нейромоторная , или двигательная единица , которая включает несколько мышечных волокон, иннервируемых мотонейроном спинного мозга (рис. 7.30, 7.31). В ответ на импульсы, приходящие от мотонейрона, сокращаются все мышечные волокна, входящие в нейромоторную единицу.

Число мышечных волокон, составляющих двигательную единицу, скорость их сокращения и устойчивость к утомлению неодинаковы. В зависимости от их свойств двигательные единицы подразделяют на быстрые (фазные) } медленные (тониРис. 7.30. Двигательные единицы

ческиё) и переходные. Двигательные единицы каждой мышцы неодинаковы. Мышцы, обеспечивающие точные и быстрые движения (например, мышцы пальцев руки), состоят в основном из нескольких сотен или тысяч быстрых двигательных единиц. В большинстве мышц смешанного типа первыми активизируются медленные двигательные единицы, развивающие


Рис. 7.31

а,6 - нервно-мышечный синапс; в - электронная сканирующая

микроскопия небольшую силу сокращения, а при увеличении возбуждения в сокращение вовлекаются мышечные волокна, развивающие большую силу. Активация быстрых нсйромогорных единиц обеспечивает точную двигательную реакцию.

В естественных условиях к мышце из ЦНС поступают не одиночные импульсы, а серии импульсов, на которые она реагирует не одиночным, а длительным (тетаническим ) сокращением. Оно обусловлено тем, что каждый следующий импульс приходит в момент, когда еще не закончилась предыдущая волна сокращения. Последняя, суммируясь с предыдущей, продлевает сокращение мышцы. Если каждая новая волна сокращения возникает в момент, когда мышца уже начала расслабляться под влиянием предшествующего раздражения, возникает зубчатый тетанус. При меньшем интервале между раздражениями, когда каждая новая волна сокращения возникает до начала мышечного расслабления, образуется сплошной, или гладкий , тетанус. Отдельные волокна мышцы при ее естественной стимуляции с нерва отвечают на каждый импульс одиночным сокращением. Слитный тетанус получается за счет суммации сокращений отдельных мышечных волокон. Обычно мышечные волокна одной мышцы сокращаются не одновременно, так как импульсы от различных мотонейронов ЦНС также приходят к ним не одновременно. Это способствует образованию и поддержанию слитного тетаничес- кого сокращения мышцы.

Сокращаясь, мышца выполняет работу. Работа мышц зависит от силы их сокращения, а сила сокращения одной и той же мышцы - от количества нейромоторных единиц, участвующих в нем. Чем их больше, тем сокращение интенсивнее. Сила сокращения также зависит от частоты раздражения. До известного предела увеличение частоты стимуляции сопровождается возрастанием силы мышечного сокращения. Это связано с тем, что с увеличением частоты раздражения в реакцию включается все большее количество мышечных волокон. Максимальное напряжение, которое может развить мышца, определяется числом образующих ее волокон: чем оно больше, тем больше сила мышц. В связи с этим перистые мышцы, состоящие из множества волокон, отличаются большей силой.

Проявление силы мышцы зависит и от особенностей ее прикрепления к костям. Мышцы с большей площадью прикрепления или опоры, имеют большие возможности для проявления силы. Важно также и место приложения силы мышц. Кости вместе с прикрепляющимися к ним мышцами являются рычагами, поэтому чем ближе к точке приложения силы тяжести или чем дальше от точки опоры рычага и ближе к точке приложения силы тяжести прикрепляется мышца, тем большую силу она может развить (рис. 7.32).

Зависимость мышечной силы от таких факторов отчетливо проявляется в деятельности мышц верхней и нижней конечностей. Верхняя конечность предназначена для выполнения разнообразных точных и быстрых движений. Функция нижних конечностей требует большой силы их мышц. Этим функциональным задачам соответствует и характер прикрепления соответствующих мышц. Так, дельтовидная мышца, расположенная в области плечевого сустава, имеет небольшую поверхность опоры и прикрепляется на плечевой кости вблизи от места опоры рычага. У мышц нижних конечностей площадь опоры велика и точка приложения силы находится далеко от точки опоры. У ягодичной мышцы площадь опоры в 23 раза больше, чем у дельтовидной, а площадь прикрепления - больше в 4,5 раза.

Между силой мышцы и величиной ее укорочения нет прямо пропорциональной зависимости. Максимальное укорочение мышцы, а следовательно, и интенсивность сокращения, вызываемого этим укорочением движения, в том или ином суставе зависит от длины мышечных волокон. Она наибольшая в мышцах с параллельным расположением волокон, в то время как большей силой обладают перистые мышцы. Первоначально растянутая мышца при сокращении укорачивается на большую величину.

Работа мышцы при сокращении равна произведению массы груза на поднятую высоту. Отсюда следует, что максимальная работа, выполняемая при одиночном сокращении мышцы, зависит от ее силы (чем больше сила, тем больший груз может быть поднят) и степени укорочения мышцы. В про-


Рис. 732.

а - рычаг равновесия; б - рычаг скорости. Треугольник - точка опоры; темные стрелки показывают направление сил мышечной тяги; пунктирные стрелки - направление силы тяжести; пунктирная стрелка - движение цессе естественной деятельности человека величина работы, выполняемой той или иной мышцей, в значительной степени зависит от се способности длительно находиться в сокращенном состоянии (выносливость мышц). Различают выносливость к статическим и динамическим усилиям. Выносливость к статическим усилиям определяется временем, в течение которого удерживается величина заданного усилия. У разных мышц она неодинакова. Наименьшей выносливостью характеризуется трехглавая мышца плеча (1 мин - при усилии, равном 50% максимального), наибольшей - икроножная мышца (7 мин).

Выносливость к длительной работе зависит не только от величины поднимаемого груза, но и от темпа работы. Работа бывает наибольшей при какой-то средней величине груза и частоте движений. Для каждого вида мышечной деятельности можно подобрать некоторый средний (оптимальный) ритм и величину нагрузки, при которой работа станет максимальной, а утомление будет развиваться постепенно.

Работа мышц - необходимое условие их сокращения. Длительная бездеятельность ведет к атрофии мышц и потере работоспособности. Умеренная систематическая работа мышц способствует увеличению их объема, возрастанию силы и работоспособности, что важно для физического развития всего организма.

При длительной динамической или статической работе наступает утомление мышц. Утомлением называют временное понижение работоспособности клетки, органа или целостного организма, наступающее в результате работы и исчезающее после отдыха. В естественных условиях утомление связано, прежде всего, с изменениями, происходящими в нервной системе, в частности с нарушением проведения возбуждения в межнейрональных и нервно-мышечных синаптических контактах. Скорость наступления утомления зависит от состояния нервной системы, ритма, в котором производится работа, и от величины нагрузки. После отдыха работоспособность восстанавливается. И. М. Сеченов впервые (в 1903 г.) показал, что восстановление работоспособности утомленных мышц руки человека после длительной работы по подъему груза происходит быстрее, если в период отдыха производить работу другой рукой или ногой. Такой отдых был назван активным.

Чередование умственного и физического труда, динамические паузы до и во время занятий способствуют повышению работоспособности детей и взрослых. Чем меньше ребенок, тем быстрее у него развивается утомление. В грудном возрасте утомление наступает через 1,5-2 часа обычного бодрствования. Дети утомляются и при неподвижности или длительном ограничении движений.

Мышцы человека даже в покое находятся в несколько сокращенном состоянии. Длительное удерживание напряжения называют мышечным тонусом . Во время сна или при наркозе тонус мышц снижается и вследствие этого тело расслабляется. Тонические сокращения мышц не приводят к развитию утомления. Полное исчезновение тонуса мышц наблюдается только после смерти. Сохранение тонуса обусловлено постоянным поступлением к мышце следующих друг за другом с большими интервалами нервных импульсов от двигательных нейронов Ц11С. Активность этих нейронов поддерживается импульсами, поступающими из вышележащих отделов ЦНС и от рецепторов мышц - мышечных веретен.

Тонус мышц играет важную роль в осуществлении координации движений. У новорожденных и грудных детей преобладает тонус мышц-сгибателей, обусловленный повышенной возбудимостью красного ядра среднего мозга. По мере функционального созревания пирамидной системы мозга и нейронов коры больших полушарий тонус мышц у детей снижается. Это четко проявляется во втором полугодии жизни ребенка и является необходимым условием для развития ходьбы. К трем - пяти годам устанавливается равновесие тонуса мышц-аитагонистов.