Креатинфосфат (creatinfosfat) инструкция по применению. Энергетические процессы в мышце для максимального роста Что такое креатинфосфат

Это вещество является универсальным источником энергии. АТФ синтезируется в ходе цитратного цикла Кребса. В момент воздействия на молекулу АТФ особого фермента АТФазы, она гидролизуется. В этот момент происходит отделение фосфатной группы от основной молекулы, что приводит к образованию нового вещества АДФ и выделению энергии.
Миозиновые мостики при взаимодействии с актином имеют АТФазную активность. Это и приводит к расщеплению молекул АТФ и получению необходимой энергии для выполнения заданной работы.

Процесс образования креатинфосфата


Количество АТФ в тканях мускулов весьма ограничено и по этой причине организм должен постоянно восполнять его запасы. Этот процесс происходит с участием креатинфосфата. Данное вещество обладает способностью отсоединять от своей молекулы фосфатную группу, присоединяя ее к АДФ. В результате этой реакции образуется креатин и молекула АТФ.

Данный процесс носит название «реакция Ломана». Это и является основной причиной необходимости потребления атлетами добавок, содержащих креатин. При этом заметим, что креатин используется только во время анаэробных нагрузок. Этот факт связан с тем, что креатинфосфат может интенсивно работать только в течение двух минут, после чего организм получает энергию из других источников.

Таким образом, применение креатина оправдано только в силовых видах спорта. Например, легкоатлетам применять креатин, большого смысла нет, так как он не может повысить спортивные показатели в этом виде спорта. Запас креатинфосфата также не очень велик и организм использует вещество только в начальной фазе тренинга. После этого подключаются другие энергетические источники - анаэробный и затем аэробный гликолиз. Во время отдыха реакция Ломана, протекает в обратном направлении и запас креатинфосфата восстанавливается в течение нескольких минут.

Обменно-энергетические процессы скелетной мускулатуры


Благодаря креатинфосфату организм обладает энергией для восстановления запасов АТФ. В период отдыха в мускулах содержится примерно в 5 раз больше креатинфосфата в сравнении с АТФ. После начала роботы мускулов количество молекул АТФ стремительно сокращается, а АДФ - увеличивается.

Реакция получения АТФ из креатинфосфата протекает достаточно быстро, но количество молекул АТФ, которое может быть синтезировано напрямую зависит от начального уровня креатинфосфата. Также ткани мускулов обладают веществом под названием миокиназа. Под его воздействием две молекулы АДФ конвертируются в одну АТФ и АДФ. Запасов АТФ и креатинфосфата в общей сложности достаточно для работы мускулов с максимальной нагрузкой в течение от 8 до 10 секунд.

Процесс реакции гликолиза


Во время реакции гликолиза производится незначительное количество АТФ из каждой молекулы глюкозы, но при наличии большого количества всех необходимых ферментов и субстрата, может быть получено достаточное количество АТФ за короткий отрезок времени. Также важно отметить, что гликолиз может протекать лишь при наличии кислорода.

Глюкоза, необходимая для реакции гликолиза берется из крови или из запасов гликогена, которые находятся в тканях мускулов и печени. Если в реакции участвует гликоген, то из одной его молекулы может быть получено сразу три молекулы АТФ. С ростом мускульной активности потребность организма в АТФ увеличивается, что приводит и к росту уровня молочной кислоты.

Если нагрузка умеренная, скажем при забеге на длинные дистанции, то АТФ в основном синтезируется в ходе реакции окислительного фосфорилирования. Это дает возможность получать из глюкозы существенно большее количество энергии в сравнении с реакцией анаэробного гликолиза.


Жировые клетки способны расщепляться лишь под воздействием окислительных реакций, однако это приводит к получению большого количества энергии. Аналогичным образом в качестве источника энергии могут быть использованы и аминокислотные соединения.

На протяжении первых 5–10 минут умеренных физических нагрузок основным источником энергии для мускулов является гликоген. Затем, следующих полчаса подключаются глюкоза и жирные кислоты, находящиеся в крови. Со временем роль жирных кислот в получении энергии становиться преобладающей.

Также следует указать на взаимосвязь между анаэробным и аэробным механизмом получения молекул АТФ под воздействием физических нагрузок. Анаэробные механизмы получения энергии используются при кратковременных высокоинтенсивных нагрузках, а аэробные - при продолжительных нагрузках малой интенсивности.

После снятия нагрузки, организм некоторое время продолжает потреблять кислород в количестве, превышающем норму. В последние годы для обозначения дефицита кислорода принято использовать понятие «избыточное потребление кислорода после физических нагрузок».

Во время восстановления запасов АТФ и креатин фосфата этот уровень высок, а затем начинает снижаться и в этот период происходит удаление молочной кислоты из тканей мускулов. О росте потребления кислорода и повышении метаболизма также говорит и факт повышения температуры тела.

Чем продолжительнее и интенсивнее была нагрузка, тем больше времени потребуется организму на восстановление. Так при полном истощении запасов гликогена на их полное восстановление может потребоваться несколько дней. В то же время резервы АТФ и креатинфосфата могут быть восстановлены максимум за пару часов.

Вот такие энергетические процессы в мышце для максимального роста протекают под воздействием физических нагрузок. Понимание этого механизма позволит сделать тренинг еще более эффективным.

Подробнее об энергетических процессах в мышцах смотрите здесь:

Креатин – вещество скелетных мышц, миокарда, нервной ткани. В виде креатинфосфата креатин является "депо" макроэргических связей, используется для быстрого ресинтеза АТФ во время работы клетки.

Использование креатинфосфата для ресинтеза АТФ

Особенно показательна роль креатина в мышечной ткани. Креатинфосфат обеспечивает срочный ресинтез АТФ в первые секунды работы (5‑10 сек), когда никакие другие источники энергии (анаэробный гликолиз , аэробное окисление глюкозы , β-окисление жирных кислот) еще не активированы, и кровоснабжение мышцы не увеличено. В клетках нервной ткани креатинфосфат поддерживает жизнеспособность клеток при отсутствии кислорода.

При мышечной работе ионы Са 2+ , высвободившиеся из саркоплазматического ретикулума, являются активаторами креатинкиназы. Реакция еще интересна тем, что на ее примере можно наблюдать обратную положительную связь - активацию фермента продуктом реакции креатином . Это позволяет избежать снижения скорости реакции по ходу работы, которое должно было бы произойти по закону действующих масс из-за снижения концентрации креатинфосфата в работающих мышцах.

Около 3% креатинфосфата постоянно в реакции неферментативного дефосфорилирования превращается в креатинин . Количество креатинина, выделяемое здоровым человеком в сутки, всегда почти одинаково и зависит только от объема мышечной массы. Уровень активности креатинкиназы в крови и концентрация креатинина в крови и моче являются ценными диагностическими показателями.

Образование креатинина из креатинфосфата

Синтез креатина

Синтез креатина идет последовательно в почках и печени в двух трансферазных реакциях. По окончании синтеза креатин с током крови доставляется в мышцы или мозг.

Реакции синтеза креатина в почках и печени

Здесь при наличии энергии АТФ (во время покоя или отдыха) он фосфорилируется с образованием креатинфосфата.

Синтез креатинфосфата

Если синтез креатина опережает возможность его фиксации в мышечной ткани, то развивается креатинурия – появление креатина в моче. Физиологическая креатинурия наблюдается в первые годы жизни ребенка. Иногда к физиологической относят и креатинурию стариков, которая возникает как следствие атрофии мышц и неполного использования образующегося в печени креатина. При заболеваниях мышечной системы (при миопатии или прогрессирующей мышечной дистрофии) в моче наблюдаются наибольшие концентрации креатина – патологическая креатинурия.

Креатинфосфорная кислота (креатинфосфат , фосфокреатин) - 2-[метил-(N"-фосфонокарбоимидоил)амино]уксусная кислота. Бесцветные кристаллы, растворимые в воде, легко гидролизуется с расщеплением фосфамидной связи N-P в кислой среде, устойчива в щелочной.

Кислота была открыта Филиппом и Грейс Эгглтонами из Кембриджского университета и независимо Сайрусом Фиске и Йеллапрагадой Суббарао из Гарвардской медицинской школы в 1927 году.

Лабораторный синтез - фосфорилирование креатина POCl 3 в щелочной среде.

Креатинфосфат - продукт обратимого метаболического N-фосфорилирования креатина , являющийся, подобно АТФ , высокоэнергетическим соединением. Однако, в отличие от АТФ, гидролизуемой по пирофосфатной связи O-P, креатинфосфат гидролизуется по фосфамидной связи N-P, что обуславливает значительно больший энергетический эффект реакции. Так, при гидролизе изменение свободной энергии для креатина G 0 ~ −43 кДж/моль, в то время как при гидролизе АТФ до АДФ G 0 ~ −30.5 кДж/моль.

Креатинфосфат содержится преимущественно в возбудимых тканях (мышечная и нервная ткани) и его биологической функцией является поддержание постоянной концентрации АТФ за счёт обратимой реакции перефосфорилирования:

креатинфосфат + АДФ ⇔ креатин + АТФ

Эта реакция катализируется цитоплазматическими и митохондриальными ферментами-креатинкиназами; при расходе (и, соответственно, падении концентрации) АТФ, например, при сокращении клеток мышечной ткани, равновесие реакции сдвигается вправо, что ведёт к восстановлению нормальной концентрации АТФ.

Концентрация креатинфосфата в покоящейся мышечной ткани в 3-8 раз превышает концентрацию АТФ, что позволяет компенсировать расход АТФ во время кратких периодов мышечной активности, в период покоя при отсутствии мышечной активности в ткани идёт гликолиз и окислительное фосфорилирование АДФ в АТФ, в результате чего равновесие реакции смещается влево и концентрация креатинфосфата восстанавливается.

В тканях креатинфосфат подвергается самопроизвольному неферментативному гидролизу с циклизацией в креатинин , выводящийся с мочой , уровень выделения креатинина зависит от состояния организма, меняясь при патологических состояниях, и является диагностическим признаком.

Креатинфосфат является одним из фосфагенов - N-фосфорилированных производных гуанидина , являющихся энергетическим депо, обеспечивающим быстрый синтез АТФ. Так, у многих беспозвоночных (например, насекомых) роль фосфагена играет аргининфосфорная кислота , у некоторых кольчатых червей - N-фосфоломбрицин.

Креатинфосфат обладает способностью отсоединять фосфатную группу и превращаться в креатин, присоединяя фосфатную группу к АДФ, которая превращается в АТФ.

АДФ + креатинфосфат = АТФ + креатин

Эта реакция получила название - реакции Ломана. Запасы креатинфосфата в волокне не велики, поэтому он используется в качестве источника энергии только на начальном этапе работы мышцы - в первые несколько секунд.

После того, как запасы креатинфосфата будут исчерпаны примерно на 1/3, скорость этой реакции будет снижаться, а это вызовет включение других процессов ресинтеза АТФ - гликолиза и кислородного окисления. По окончании работы мышцы реакция Ломана идет в обратном направлении, и запасы креатинфосфата в течение нескольких минут восстанавливаются.

Расщепление креатинфосфата играет основную роль в энергообеспечении кратковременных упражнений максимальной мощности - бег на короткие дистанции, прыжки, метание, тяжелоатлетические и силовые упражнения, продолжительностью до 20-30сек.

Гликолиз.

Гликолиз - процесс распада одной молекулы глюкозы (C6H12O6) на две молекулы молочной кислоты (C3H6O3) с выделением энергии, достаточной для "зарядки" двух молекул АТФ.

C6H12O6(глюкоза) + 2H3PO4 + 2АДФ = 2C3H6O3 (молочная к-та) + 2АТФ + 2H2O.

Гликолиз протекает без потребления кислорода (такие процессы называются анаэробными).

Но нужно сделать два важных замечания:

а) примерно половина всей выделяемой в данном процессе энергии превращается в тепло и не может использоваться при работе мышц. При этом температура мышц повышается до 41-42 градусов Цельсия,

б) энергетический эффект гликолиза не велик и составляет всего 2 молекулы АТФ из 1 молекулы глюкозы.

Гликолиз играет важную роль в энергообеспечении упражнений, продолжительность которых составляет от 30 сек до 150сек. К ним относятся бег на средние дистанции, плавание 100-200м, велосипедные гонки, длительные ускорения.

Кислородное окисление.

Для полноценного включения в действие кислородного окисления глюкозы требуется больше времени. Скорость окисления становится максимальной лишь через 1,5-2 минуты работы мышц, этот эффект широко известен под названием "второе дыхание".



Распад глюкозы в присутствии кислорода идет сложным путем. Это многостадийный процесс, включающий в себя цикл Кребса и многие другие превращения, но суммарный результат может быть выражен следующей записью:

C6H12O6(глюкоза) + 6O2 + 38АДФ + 38H3PO4 = 6CO2 + 44H2О + 38АТФ

Т.е. распад глюкозы по кислородному (аэробному) пути дает в итоге с каждой молекулы глюкозы 38 молекул АТФ. То есть кислородное окисление энергетически в 19 раз эффективнее безкислородного гликолиза. Но за все надо платить - в данном случае платой за большую эффективность является затянутость процесса. Получение молекул АТФ при кислородном окислении возможно только в митохондриях, а там АТФ недоступна АТФазам, которые находятся во внутриклеточной жидкости - внутренняя мембрана митохондрий непроницаема для заряженных нуклеотидов. Поэтому АТФ из митохондрий доставляется во внеклеточную жидкость достаточно сложным путем, используя при этом различные ферменты, что в целом существенно замедляет процесс получения энергии.

Для полноты картины упомяну еще и о последнем пути ресинтеза АТФ - миокиназная реакция . В случае значительного утомления, когда возможности других путей получения уже исчерпаны, и в мышцах накопилось много АДФ, то из 2 молекул АДФ при помощи фермента миокиназа возможно получение 1 молекулы АТФ:

АДФ + АДФ = АТФ + АМФ.

Но эту реакцию можно рассматривать как "аварийный" механизм, который не очень эффективен и поэтому организм очень редко к нему прибегает и только в крайнем случае.

Итак, существует несколько способов получения молекул АТФ. Далее АТФ при помощи катионов кальция и АТФазы "заряжает" миозин энергией, которая используется для спайки с актином и для продвижения актиновой нити на один "шаг".

И здесь есть одна важная особенность.

Миозин может иметь различную (большую или меньшую) активность АТФазы, поэтому в целом выделяют различные типы миозина - быстрый миозин характеризуется высокой активностью АТФазы, медленный миозин характеризуется меньшей активностью АТФазы.

Собственно, поэтому и скорость сокращения мышечного волокна определяются типом миозина. Волокна, с высокой активностью АТФазы принято называть быстрыми волокнами, волокна, характеризующиеся низкой активностью АТФазы, - медленными волокнами.

Быстрые волокна требуют высокой скорости воспроизводства АТФ, обеспечить которую может только гликолиз, так как, в отличие от окисления, он не требует времени на доставку кислорода к митохондриям и доставку энергии от них во внутриклеточную жидкость.

Поэтому быстрые волокна (их еще называют белыми волокнами) предпочитают гликолитический путь воспроизводства АТФ. За высокую скорость получения энергии белые волокна платят быстрой утомляемостью, так как гликолиз, ведет к образованию молочной кислоты, накопление которой вызывает усталость мышцы и в конечном итоге останавливает ее работу.

Медленные волокна не требуют столь быстрого восполнения запасов АТФ и для обеспечения потребности в энергии используют путь окисления. Медленные волокна еще называют красными волокнами. Эти волокна окружены массой капилляров, которые необходимы для доставки с кровью большого количества кислорода. Энергию красные волокна получают путем окисления в митохондриях углеводов и жирных кислот. Медленные волокна являются низко утомляемыми и способны поддерживать относительно небольшое, но длительное напряжение.

Итак, мы вкратце ознакомились с устройством и энергетическим обеспечением мышц, но нам осталось выяснить что же с мышцами происходит во время тренировки.

Микроскопические исследования показывают, что в результате тренировок в ряде мышечных волокон нарушается упорядоченное расположение миофибрилл, наблюдается распад митохондрий, а в крови повышается уровень лейкоцитов, как при травмах или инфекционном воспалении (Морозов В.И., Штерлинг М.Д с соавторами).

Разрушение внутренней структуры мышечного волокна во время тренировки (т.е. микротравмы), приводит к появлению в волокне обрывков белковых молекул. Иммунная система воспринимает обрывки белка как чужеродный белок, тут же активизируется и старается их уничтожить.

Итак, на тренировках мы разрушаем свои мышечные волокна и тратим запасы АТФ.

Но мы ходим в тренажерный зал вовсе не для того, чтобы израсходовать энергию и получить микротравмы. Мы ходим, чтобы накачать мышцы и стать сильнее.

Это становится возможным только благодаря такому явлению, как суперкомпенсация (сверхвосстановление). Суперкомпенсация проявляется в том, что в строго определенный момент отдыха после тренировки уровень энергетических и пластических веществ превышает исходный дорабочий уровень.

Закон суперкомпенсации справедлив для всех биологических соединений и структур, которые в той или иной мере расходуются при мышечной деятельности. К ним относятся: креатинфосфат, структурные и ферментные белки, фосфолипиды, клеточные органеллы (митохондрии, лизосомы).

В целом, явление суперкомпенсации может быть отражено графиком (рис.3).

Рис.3. Суперкомпенсация. а) - разрушение /расходование во время тренировки, б) - восстановление, в) - сверхвосстановление, г) - возвращение к исходному уровню.

Как становится ясно из график, фаза суперкомпенсации длится достаточно короткое время. Постепенно уровень энергетических веществ возвращается к норме и тренировочный эффект исчезает.

Больше того, если проводить следующую тренировку до наступления фазы суперкомпенсации (рис.4, а), то это приведет только к истощению и перетренированности.

Если проводить следующую тренировку после фазы суперкомпенсации (рис.4, б), то следы предыдущей работы уже сгладятся и тренировка не принесет ожидаемого результата - увеличения мышечной массы и силы.

Чтобы добиться выраженного эффекта, нужно проводить тренировку строго в фазе суперкомпенсации (рис.4, в).

Рис. 4. Тренировочный эффект (черным выделены моменты тренировок). а) - слишком частые тренировки, истощение и перетренированность, б) - слишком редкие тренировки, никакого существенного эффекта, в) - правильный тренировки в момент суперкомпенсации, рост силы и мышечной массы.

Итак, из вышеизложенного ясно, что проводить тренировки надо в фазе суперкомпенсации.

Но тут мы встречаемся с одной сложной проблемой.

Дело в том, что соединения и структуры, которые расходуются или разрушаются при тренировке, имеют разное время восстановления и достижения суперкомпенсации!

Фаза суперкомпенсации креатинфосфата достигается через несколько минут отдыха после нагрузки.

Фаза суперкомпенсации содержания гликогена в мышцах наступает через 2-3 суток после тренировки, а к этому моменту уровень креатинфосфата уже вступит в фазу утраченной суперкомпенсации.

А вот для восстановления белковых структур клеток, разрушенных в ходе тренировок, может потребоваться еще больший период времени (до 7-12 дней), в течение которого уровень гликогена в мышцах уже вернется к исходному уровню.

Поэтому нужно в первую очередь определиться какой из этих параметров наиболее важен с точки зрения наращивания силы и мышечной массы, а каким из них можно и пренебречь.

Очевидно, что первым параметром, на который нужно ориентироваться в ходе тренировок является уровень креатинфосфата - ведь именно им обеспечивается силовая работа мышц.

Многие новички, да и профессиональные спортсмены сильно недооценивают важность теоритических знаний. Считается, что для обретения желаемого телосложения достаточно регулярно посещать тренажерный зал.

Лишь единицы догадываются, что основа всего - это теория. Ее правильное применение позволит стабильно прогрессировать, причем довольно быстрыми темпами!

Сегодня мы рассмотрим мышечную работу с точки зрения биохимии и физиологии. Знание такой теории необходимо для развития определенных характеристики (силы, выносливости и т.п.) а так же для составления тренировочных программ. Итак…

Все энергетические процессы в живом организме протекают благодаря расходу АТФ (аденозинтрифосфата ). АТФ – это важнейший нуклеотид, олицетворяющий собой энергообмен любой клетки, будь то умственная деятельность, работа внутренних органов человека или же мышечная активность.

Как таковых запасов АТФ у человека не наблюдается. Система энергообмена организма, используя кислород воздуха, ежесекундно синтезирует и расходует огромное количество АТФ.

Мышечное сокращение и расслабление так же происходит благодаря расщеплению АТФ, однако при интенсивной и длительной работе, простых вдохов становится недостаточно. Именно поэтому организм обладает многоуровневой системой мышечного энергообмена, каждый из которых последовательно сменяет другой:

  1. Система креатина и креатинфосфата (КрФ) – алактатный способ (отсутствует выделение побочного продукта лактата – молочной кислоты). Приоритетная активность – не более 10-12 секунд.
  2. Анаэробный гликолиз – лактатный способ (протекает с выделением лактата, то есть молочной кислоты). Приоритетная активность – 40-45 секунд.
  3. Аэробный гликолиз – окислительный способ (используется кислород, то есть побочные продукты не образуются). Приоритетная активность – от 50 секунд и более.

Прежде чем продолжить описание мышечного энергообмена, необходимо сказать несколько слов о расходе АТФ. Ресинтез АТФ возможен благодаря необычному строению данного нуклеотида.

Молекулы АТФ никогда не расщепляются полностью. Под действием фермента АТФазы аденозинтрифосфат подвергается гидролизу и тем самым отделяет от себя фосфатную группу – ортофосфорную кислоту (H 3 PO 4). Данный процесс ведет к высвобождению энергии и появлению остаточного продукта – аденозиндифосфата (АДФ).

Грубо говоря, АТФ можно назвать соединением с тремя фосфатными группами, а АДФ – с двумя. Благодаря наличию АДФ возможен ресинтез АТФ. Формула реакции выглядит следующим образом:

АТФ + H 2 O = АДФ + H3PO4 + энергия

Все способы поддержания нормального энергообмена будь то гликолиз или окисление, используют АДФ в качестве сырья для создания новых молекул АТФ. Это основной принцип биохимии данного процесса!

А теперь посмотрим, как происходит ресинтез АТФ из АДФ в каждом из способов.

Алактатный способ
Как уже говорилось выше, запасов АТФ практически не существует. Их хватает на первые несколько секунд работы высокой мощности. Чтобы обеспечить мышечную группу энергией организм буквально с первых секунд запускает систему креатина.

В организме человека хранится как простой креатин, так и схожее соединение связанное с фосфатной группой – креатинфосфат (КрФ). Вся уникальность КрФ заключается в способности этих кристаллов отделять от себя ортофосфорную кислоту. Под действием активного фермента креатинкиназы фосфат из КрФ переходит к соединению АДФ, вследствие чего образуется новая молекула АТФ. В то же время, оставшись без фосфатной группы, КрФ превращается в обыкновенный креатин, на который впоследствии при помощи ферментов и кислорода присоединяется новая молекула ортофосфорной кислоты. Данный процесс описывается реакцией Ломана:

АДФ + КрФ = АТФ + креатин

Максимальная алактатная мощность зависит от многих факторов: от скорости работы креатинкиназы, от интенсивности внешней нагрузки, от величины потребления энергии и т.п. Однако, несмотря на это, известно, что предельная длительность удержания максимальной мощности креатин-системы находится в диапазоне 6-12 секунд.

Следует помнить, что продолжительность предельной алактатной работы во многом зависит от запасов креатина в мышцах. Представьте аналогию с транспортировкой грузов. В нашем случае груз – это фосфатные группы, а креатин – грузовик перевозчик.

Наличие в вашей компании лишь 4-5 грузовиков не позволит совершать регулярные и быстрые перевозки. В то же время штат из 20-30 перевозчиков позволит наладить бесперебойную поставку грузов. Именно поэтому креатиновые добавки пользуются огромной популярностью. Их регулярный прием позволяет увеличить число «перевозчиков».

Стоит отметить, что количество креатина у тренированного человека в 1,5-2 раза превышает запасы данного соединения у обычного человека.

При нагрузке средней мощности запасов КрФ хватает на 20-30 секунд. Восстановление до исходного уровня происходит за 2-5 минут отдыха, с помощью обыкновенного кислорода. Этим объясняется появление отдышки (кислородного долга) сразу после выполнения тяжелого упражнения.

Лактатный способ
Гликолиз – это расщепление одной молекулы глюкозы на две молекулы лактата (молочной кислоты) , с соответствующим высвобождением энергии, которой хватает для ресинтеза двух молекул АТФ. Данный процесс протекает с помощью ферментов, непосредственно в саркоплазме мышечного волокна (клетки).

Главная особенность анаэробного гликолиза – отсутствие потребности в кислороде!

Энергетический потенциал и общая продуктивность данного способа выше, нежели система КрФ, однако и здесь есть ложка Дегтя. Взгляните на формулу:

C 6 H 12 O 6 + 2H 3 PO 4 + 2АДФ = 2C 3 H 6 0 3 + 2АТФ + 2H 2 O

В этой формуле:
- C 6 H 12 O 6 – глюкоза (виноградный сахар или декстроза),
- C 3 H 6 0 3 – молочная кислота (лактат).

Столь быстрый ресинтез АТФ ведет к появлению побочного продукта – молочной кислоты. Скорость вымывания лактата, как правило, ниже скорости его появления, вследствие чего с каждой секундой его становится все больше.

Недостаток лактата заключается в блокировании сигналов от мотонейронов. При достаточном скоплении молочной кислоты вы теряете способность иннервировать рабочую мышечную группу, т.е. вы не можете сократить или расслабить ее. Все это, в сумме с повышенной кислотностью, вызывает соответствующее чувство «жжения».

Отдых длительностью 4-5 минут позволяет утилизировать небольшую часть лактата, вследствие чего к вам возвращается мышечная работоспособность. Спустя несколько часов после тренинга, практически вся молочная кислота вымывается. Поэтому всевозможные заявления о том, что послетренировочные боли (крепатура) на следующие сутки вызваны остаточным лактатом – не более чем стереотип.

Гликолиз активизируется примерно на 15-20 секунде, а его пик приходится на 30-40 секунду непрерывной работы.

Максимальная лактатная мощность может длиться от 30 до 60 секунд. При этом существует огромное количество факторов влияющих на данную характеристику. Так, вы можете развивать способность мышц противостоять кислой среде вызванной лактатом, или же повышать количество накопленного в мышечной группе гликогена. Стоит помнить, что гликоген печени не используется для энергообеспечения мышц, так как не обладает нужной мобильностью.

Окислительный способ
При более длительной нагрузке реакция анаэробного гликолиза идет на спад и постепенно уступает место аэробному окислению. Данный процесс является самым эффективным с точки зрения энергообеспечения, так как в 19 раз эффективнее лактатного способа:

C 6 H 12 O 6 + 6O 2 + 38АДФ + 38H 3 PO 4 = 6СO 2 + 44H 2 O + 38АТФ

Окисление протекает в митохондриях расположенных в мышечных клетках (симпластах). Данный способ энергообеспечения возможен только при наличии кислорода, чем и обуславливается его длительная активация. Аэробный гликолиз запускается после 80-90 секунд непрерывной работы, а пик реакции наблюдается на 2-3 минуте нагрузки. Столь позднее участие окисления объясняется необходимостью запуска огромного числа различных процессов, обеспечивающих доставку кислорода к митохондриям. После трех минут аэробной активности, возникает утомление большинства активно работающих систем организма, в частности ЦНС и мотонейронов.

Практические выводы
Многие новички задаются вопросом, почему для развития силы рекомендуется выполнять 4-6 повторений, а для так называемой «массы» - 8-12. Внимательный читатель наверняка заметил, что длительность лактатного энергообмена соизмерима с 4-6 повторениями. В то же время пик анаэробного гликолиза достигается в промежутке 8-12 повторений.

Количество повторений отражает способ восполнения энергии и тренируемую функцию. Действительно, для развития силовых характеристик необходимо уделять внимание 4-6 повторениям, так как это тренирует суставы и связки, механизм Гольджи и, кроме того, увеличивает количество свободного КрФ.

Также силовой диапазон повторений развивает миофибриллярный аппарат. В общем и целом, повышается сила спортсмена, однако вместе с развитием данной характеристики ухудшается работа кровеносной системы, новые миофибриллы попросту вытесняют кровеносные сосуды. Повышение силы влияет на увеличение мускулатуры, но не так сильно, как тренировка гликолитических способностей мышц.

Регулярная анаэробная работа предельной мощности развивает целый каскад характеристик. Принято считать, что именно 8-12 повторений ведут к гипертрофии мышечных волокон (клеток). Тренировки такого типа способствуют заметному увеличению мускулатуры и соответствующему развитию кровеносной системы.

Грубо говоря, именно 8-12 повторений в каждом подходе, заставляют ваши мышцы увеличиваться в размерах!

Что касается окислительных возможностей мышц, то, как правило, бодибилдеры уделяют внимание такой нагрузке лишь в процессе «сушки» - похудения за счет снижения процента жира в организме. Вклад окисления в развитие мышечных волокон минимален. Однако в то же время именно длительные тренировки, использующие окислительный способ энергообмена, ведут к заметному повышению выносливости, во многом за счет появления новых митохондрий и превращения промежуточных типов мышечных волокон в окислительные.

Итоги
Из всего вышесказанного можно сделать довольно простые выводы:

  • Если вы развиваете силу, используйте систему креатинфосфата (подход в этом случае должен длиться не более 20 секунд);
  • Если вы стремитесь к увеличению мускулатуры и развитию силовой выносливости, тренируйтесь в анаэробном лактатном режиме;
  • Если вы улучшаете выносливость, уделите внимание окислительному энергообмену. В то же время это позволит сжечь подкожный жир.
Однако никогда не зацикливаетесь на развитии только одной тренировочной функции. Запланированное чередование количества повторений (систем энергообмена) в том или ином цикле тренинга является основным принципом периодизации нагрузок, который заложен в любой правильной тренировочной схеме.