Какие части тела птицы является рычагами. Рычаг в теле птицы

"Я Землю бы мог повернуть рычагом, лишь дайте мне точку опоры”

Архимед


Рычаг - один из наиболее распространенных и простых типов механизмов в мире, присутствующий как в природе, так и в созданном человеком мире. Рычагом называют твердое тело, которое может вращаться вокруг некоторой оси. Рычаг - это необязательно длинный и тонкий предмет.

Тело человека как рычаг

В скелете животных и человека все кости, имеющие некоторую свободу движения, являются рычагами, например, у человека – кости конечностей, нижняя челюсть, череп, фаланги пальцев.

Взглянем на локтевой сустав. Лучевая и плечевая кости соединятся вместе хрящом, к ним так же присоединяются мышцы бицепса и трицепса. Вот мы и получаем простейший механизм рычага.

Если вы держите в руке гантель весом в 3 кг, какое усилие при этом развивает ваша мышца? Место соединения кости и мышцы делит кость в соотношении 1 к 8, следовательно, мышца развивает усилие в 24 кг! Получается, мы сильнее самих себя. Но рычажная система нашего скелета не позволяет нам в полной мере использовать нашу силу.

Наглядный пример более удачного применения преимуществ рычага в скелетно-мышечной системе организма обратные задние колени у многих животных (все виды кошек, лошади, и т.д.).

Их кости длиннее наших, а особое устройство их задних ног позволяет им гораздо эффективнее использовать силу своих мышц. Да, несомненно, их мышцы гораздо сильнее чем у нас, но и вес их больше на порядок.

Средне-статистическая лошадь весит около 450 кг, и при этом может легко прыгнуть на высоту около двух метров. Нам же с вами, чтобы выполнить такой прыжок, надо быть мастерами спорта по прыжкам в высоту, хотя мы весим в 8-9 раз меньше, чем лошадь.

Раз уж мы вспомнили о прыжках в высоту, рассмотрим варианты применения рычага, которые придуман человеком. Прыжки в высоту с шестом очень наглядный пример.

При помощи рычага длинной около трех метров (длинна шеста для прыжков в высоту около пяти метров, следовательно, длинное плечо рычага, начинающееся в месте перегиба шеста в момент прыжка, составляет около трех метров) и правильного приложения усилия, спортсмен взлетает на головокружительную высоту до шести метров.

Возьмите ручку, пишите что-нибудь или рисуйте и наблюдайте за ручкой и движением пальцев. Скоро вы обнаружите, что ручка – это рычаг. Найдите точку опоры, оцените плечи и убедитесь, что и в этом случае вы проигрываете в силе, но выигрываете в скорости и расстоянии. Собственно при письме сила трения грифеля о бумагу невелика, так что мышцы пальцев не слишком напрягаются. Но есть такие виды работ, когда пальцы должны работать во всю, преодолевая значительные силы, и при этом совершать движения исключительной точности: пальцы хирурга, музыканта.

Рычаг в быту

Рычаги так же распространены и в быту. Вам было бы гораздо сложнее открыть туго завинченный водопроводный кран, если бы у него не было ручки в 4-6 см, которая представляет собой маленький, но очень эффективный рычаг.

То же самое относится к гаечному ключу, которым вы откручиваете или закручиваете болт или гайку. Чем длиннее ключ, тем легче вам будет открутить эту гайку, или наоборот, тем туже вы сможете её затянуть.

При работе с особо крупными и тяжелыми болтами и гайками, например при ремонте различных механизмов, автомобилей, станков, используют гаечные ключи с рукояткой до метра.

Другой яркий пример рычага в повседневной жизни самая обычная дверь. Попробуйте открыть дверь, толкая её возле крепления петель. Дверь будет поддаваться очень тяжело. Но чем дальше от дверных петель будет располагаться точка приложения усилия, тем легче вам будет открыть дверь.

В растениях рычажные элементы встречаются реже, что объясняется малой подвижностью растительного организма. Типичный рычаг – ствол дерева и корни. Глубоко уходящий в землю корень сосны или дуба оказывают огромное сопротивление, поэтому сосны и дубы почти никогда не выворачиваются с корнем. Наоборот, ели, имеющие часто поверхностную корневую систему, опрокидываются очень легко.

«Колющие орудия» многих животных и растений – когти, рога, зубы и колючки – по форме напоминают клин (видоизменённая наклонная плоскость); клину подобна и заострённая форма головы быстроходных рыб. Многие из этих клиньев имеют очень гладкие твёрдые поверхности, чем и достигается их большая острота.

Рычаги в технике

Естественно, рычаги так же повсеместно распространены и в технике.

Простой механизм "рычаг" имеет две разновидности: блок и ворот .


При помощи рычага можно маленькой силой уравновесить большую силу. Рассмотрим, например, подъем ведра из колодца. Рычагом является колодезный ворот - бревно с прикрепленной к нему изогнутой ручкой, или колесом.

Ось вращения ворота проходит сквозь бревно. Меньшей силой служит сила руки человека, а большей силой - сила, с которой ведро и свисающая часть цепи тянет вниз

Еще до нашей Эры люди начали применять рычаги в строительном деле. Например, на рисунке вы видите использование рычага при постройке здания. О том, что рычаги, блоки и прессы позволяют получить выигрыш в силе, мы уже знаем. Однако "даром" ли дается такой выигрыш?

При пользовании рычагом более длинный его конец проходит больший путь. Таким образом, получив выигрыш в силе, мы получаем проигрыш в расстоянии. Это значит, что, поднимая маленькой силой груз большого веса, мы вынуждены совершать большое перемещение.

Самый очевидный пример рычаг переключения коробки передач в автомобиле. Короткое плечо рычага та его часть, что вы видите в салоне.

Длинное плечо рычага скрыто под днищем автомобиля, и длиннее короткого примерно в два раза. Когда вы переставляете рычаг из одного положения в другое, длинное плечо в коробке передач переключает соответствующие механизмы.

Например, в спортивных автомобилях, для более быстрого переключения передач, рычаг обычно устанавливают короткий, и диапазон его хода так же делают коротким.

Однако, в этом случае водителю необходимо прилагать больше усилий, чтобы переключить передачу. Напротив, в большегрузных автомобилях, где механизмы сами по себе тяжелее, рычаг делают длиннее, и диапазон его хода так же длиннее, чем в легковом автомобиле.

Простой механизм «наклонная плоскость» и её две разновидности – клин и винт

Наклонная плоскость применяется для перемещения тяжелых предметов на более высокий уровень без их непосредственного поднятия.Если нужно поднять груз на высоту, всегда легче воспользоваться пологим подъемом, чем крутым. Причем, чем положе уклон, тем легче выполнить эту работу.

Тело на наклонной плоскости удерживается силой, которая... по величине во столько раз меньше веса этого тела, во сколько раз длина наклонной плоскости больше ее высоты.


Клин, вбиваемый в полено, действует на него сверху вниз. При этом он раздвигает образующиеся половинки влево и вправо. То есть клин изменяет направление действия силы.

Таким образом, мы можем убедиться в том, что механизм рычага очень широко распространен как в природе, так и в нашем повседневном быту, и в различных механизмах.

Кроме того, сила, с которой он раздвигает половинки бревна, гораздо больше силы, с которой молот воздействует на клин. Следовательно, клин изменяет и числовое значение приложенной силы.

Деревообрабатывающие и садовые инструменты представляли клин – это струг, тесла, скобели, лопата, мотыга. Землю обрабатывали сохой, бороной. Убирали урожай с помощью граблей, кос, серпов.

Винт – это вид наклонной плоскости. С его помощью можно получить значительный выигрыш в силе.


Поворачивая гайку, надетую на болт, мы поднимаем её по наклонной плоскости и выигрываем в силе.

Поворачивая рукоятку штопора по часовой стрелке, мы вызываем продвижение винта штопора вниз. Происходит преобразование движения: вращательное движение штопора приводит к его поступательному движению.

РЫЧАГИ В ТЕЛЕ ЧЕЛОВЕКА Приводя в движение кость, мышца действует на нее, как рычаг. В механике рычагом называют твердое тело, имеющее точку опоры, около которой оно может вращаться под влиянием противодействующих друг другу сил. По отношению точки приложения силы мышцы и точки сопротивления к точке опоры различают рычаги первого и второго рода.



РЫЧАГИ ПЕРВОГО И ВТОРОГО ТИПА Рычагом первого типа, двуплечим, или рычагом равновесия, в теле человека является голова (А). Подвижная опора черепа находится в атланто- затылочном сочленении. Неодинаковые по величине плечи рычага располагаются спереди и сзади от него. На переднее плечо действует тяжесть лицевой части головы, а на заднее – сила мышц, прикрепляющихся к затылочной кости. При вертикальном положении головы силы действия и противодействия, направленные на плечи рычага, уравновешиваются. Таз, балансирующий на головках бедренных костей, тоже рычаг первого рода.


РЫЧАГИ ПЕРВОГО И ВТОРОГО ТИПА Рычаг второго типа – одноплечий. Здесь точки сопротивления и приложения силы находится по одну сторону от опоры. В теле человека он имеет две разновидности. Для примера возьмем руку при опоре на локтевой сустав. На плечо рычага действует тяжесть предплечья с кистью. В случае напряжения плечелучевой мышцы, прикрепляющейся вблизи кисти и следовательно, вблизи приложения тяжести, создаются выгодные условия для работы, увеличивается ее эффективность. Эта разновидность одноплечего рычага носит название рычага силы. В случае напряжения двуглавой мышцы, прикрепляющейся вблизи точки опоры, получается меньший эффект двуглавой мышцы, прикрепляющейся вблизи точки опоры, получается меньший эффект при преодолении тяжести, но зато работа совершается с большей быстротой. Эта разновидность рычага второго рода называется рычагом скорости (Б). По принципу рычага второго рода в теле работает большинство мышц.


РЫЧАГИ В ТЕЛЕ ПТИЦ Гребной полет. Главный летательный аппарат – крыло, одноплечий рычаг, который вращается в плечевом суставе. Прикрепление маховых перьев и особенность их подвижности таковы, что при ударе вниз крыло почти не пропускает воздух. При подъеме крыла, вследствие сгибания осевой части скелета, поверхность действия крыла на воздух становится меньше. Благодаря повороту маховых перьев, крыло становится проницаемым для воздуха. Чтобы голубь мог держаться в воздухе, необходимы его движения, т. е. ветер, создаваемый взмахами крыльев. В начале полета движения крыльев более частые, затем, по мере увеличения скорости полета и сопротивляемости, число взмахов крыльев уменьшается, доходя до определенной частоты.


РЫЧАГИ В ТЕЛЕ ПТИЦ Кости нижних конечностей у птиц срастаются. Слияние ряда костей предплюсны и всех костей плюсны приводит к появлению цевки. Так возникает добавочный рычаг – прочная опора пальцев, одновременно увеличивающая длину шага. У подавляющего большинства птиц развито четыре пальца. Первый направлен назад, а три остальных вперед.


ЖУК-ПЛАВУНЕЦ Уплощенная, обтекаемая форма тела (вследствие плотного соединения головы, грудных и брюшных сегментов), практически полное отсутствие щетинок на теле, сильно развитые и сросшиеся с задней грудью задние тазики, которые формируют рычаг для уплощенных, усаженных плавательными волосками задних ног, обеспечивают эффективное перемещение жуков в толще воды.


КРЫЛЬЯ Движение крыльев у насекомых - результат работы сложного механизма и определяется, с одной стороны, особенностью сочленения крыла с туловищем, а с другой - действием особых крыловых мышц. В общих чертах основной механизм движения крыльев представляется следующим образом (рис. 319). Само крыло - это двуплечий рычаг с неодинаковой длиной плечей. С тергитом и боковой пластинкой крыло соединяется тонкими и гибкими мембранами. Чуть отступя от места этого соединения, крыло опирается на небольшой, имеющий вид столбика вырост боковой пластинки, который и является точкой опоры крылового рычага.



Птицы - единственные существа, способные имитировать человеческую речь. Кроме попугаев, это делают скворцы, вороны и другие птицы. В книге рассказывается об образе жизни и поведении «говорящих» птиц, в первую очередь попугаев, их содержании в неволе, обучении. Особое внимание уделяется словарю наиболее выдающихся «говорунов». Рассматриваются строение и функции голосового аппарата, слухового анализатора птиц. Описывается новая методика обучения, основанная на формировании у попугаев ассоциаций между словом и предметом. Много полезного найдут для себя любители птиц, занимающиеся обучением волнистых попугайчиков.

«Говорящие» птицы - уникальная загадка природы. Несмотря на то, что уже длительное время это явление интересует любителей птиц, оно еще не разгадано. Несколько десятилетий назад возрос интерес к обучению «говорению» волнистых попугайчиков. Оказалось, что они не просто копируют человеческую речь, но могут связывать слово и обозначаемый им предмет, ситуацию и высказывание. Некоторые из них отвечают на вопросы человека, обмениваются с ним репликами. Какие виды птиц «говорят», где они живут, как они ведут себя на воле, как у них устроен слух и голосовой аппарат, как научить волнистого попугайчика сговорить, как выбрать подходящую птицу, как ее содержать, чем кормить обо всем этом рассказывает данная книга.

Для зоологов, биоакустиков, зоопсихологов и широкого круга читателей.

На 1-й стр. обложки: красный ара (фото Дж. Холтона).

Книга:

<<< Назад
Вперед >>>

Среднее ухо поглощает энергию звуковой волны. Коэффициенты отражения тела и воздуха различны. Для того чтобы звук поглощался и большая часть его энергии использовалась, необходима нежная барабанная перепонка со сложным поддерживающим и регулирующим аппаратом.

У млекопитающих барабанная перепонка совсем маленькая по сравнению с птичьей, у домовой мыши ее площадь составляет всего 2,7 мм 2 , тогда как у пеночки она в несколько раз больше - 7,8 мм 2 . И у млекопитающих она вогнутая, а у птиц выпуклая, в виде высокого шатра.

Но среднее ухо не только поглощает звук, оно его обрабатывает, регулирует его дальнейшую передачу. 13 этом смысле логика - чем сложнее среднее ухо, тем совершеннее регулируемая передача - как будто будет оправданной. Но только отчасти. Потому что среднее ухо птиц устроено не проще, а иначе.

Общий вид среднего уха птиц изображен на рис. 5. Бросается в глаза увеличенная по размерам, округлая и выпуклая кнаружи, в виде шатра (у млекопитающих она относительно меньше и вогнута) барабанная перепонка, приросший к ней с одного края хрящевой элемент - экстраколумелля, продолжающаяся в слуховую косточку, упирающуюся другим концом в овальное окно улитки. При этом птицы имеют всего одну среднеушную мышцу, регулирующую натяжение барабанной перепонки.

Млекопитающие имеют три слуховые косточки, соединенные в виде зигзага и управляемые двумя мышцами. За счет этого передача звука сопровождается сложными рычажными движениями, позволяющими регулировать эту передачу. Слабые звуки могут усиливаться, сильные ослабляться или вообще блокироваться, форма сигнала и некоторые другие его характеристики - меняться в процессе передачи. Обеспечивающие это слуховые косточки могут двигаться, подобно поршню, совершать круговые движения, смещаясь как рычаг, и поворачиваться вдоль своей оси. Но в ухе птиц всего одна косточка и плюс хрящевой элемент, связывающий ее с барабанной перепонкой, - экстраколумелля. И всего одна мышца. Какие уж тут рычажные движения!

Длительное время рычажная подвижность слухового столбика среднего уха птиц вообще отрицалась. Ученые полагали, что единственная слуховая косточка двигается, подобно поршню, передавая на внутреннее ухо то, что приходит на барабанную перепонку с усилением, определяемым соотношением площадей перепонки и круглого окна. Никакой регуляции нет.

Для того чтобы доказать рычажную подвижность у птиц, пришлось пускаться на различные ухищрения. Перерезать хрящевую экстраколумеллю, с помощью которой косточка связана с барабанной перепонкой. Экстраколумелля имеет вид треноги, одна из ног которой упирается в центр перепонки и натягивает ее (вот почему перепонка у птиц выпукла, а не вогнута, как у млекопитающих), две другие располагаются в контакте с костным краем перепонки. Косточка прирастает к той точке экстраколумелли, где сходятся все три ее ноги.

Используя в качестве индикатора биоэлектрическую активность рецепторного отдела, вызванную действием звукового щелчка (кохлеарные потенциалы), и перерезая на разных уровнях опорные отростки - ноги экстраколумелли, можно получить чисто поршневой или чисто рычажный характер движений столбика и исследовать их роль в передаче звука раздельно. Опыты показали, что значение рычажной подвижности слухового столбика в работе слуховой системы птиц велико.

Сотрудник Московского университета В. Д. Анисимов разработал интересную методику изучения звукопередающей системы птиц - методику светящейся точки.


Рис. 5. Особенности строения и функционировании среднего уха птицы, способной к имитации речи (Анисимов, 1971) 1, 11 - расположение элементов среднего уха до сокращения мышцы; III, IV - смещения элементов при сокращении мышцы (справа соответствующие им изменения миограммы - EMG и микрофонного компонента - М кохлеарных потенциалов: до сокращения - а, после сокращения - б, в). 1 - барабанная перепонка; 2 - связка; 3 - супраколумеллярный отросток; 4 - инфраколумеллярный отросток; 5 - сухожилие мышцы; 6 - экстраколумеллярный отросток; 7 - платнерова связка; 8 - слуховая косточка; 9 - подошва косточки; S - сигнал

Наклеивая на различные участки звукопередающей системы кусочки блестящей фольги, отражающей свет, он зарегистрировал положение слуховой косточки и хрящевой экстраколумелли в различных динамических состояниях.

Другой важной методикой, разработанной В. Д. Анисимовым, было макетирование звукопередающей системы и ее функций на увеличенной кинематической модели, выполненной из прозрачного плексигласа. Задавая различные режимы сокращения среднеушной мышцы и вызываемого ею натяжения барабанной перепонки, можно было проследить характер подвижности звукопередающей системы, рычажные движения слухового столбика и экстраколумелли.

Напыление кристаллического серебра на различные элементы среднего уха, их подкрашивание и маркировка позволили заснять на пленку весь процесс движений, в том числе и рычажных звукопередающей системы. Эти же процессы повторились на увеличенной, модели среднего уха птиц, пропорционально увеличенной во всех звеньях.

Таким образом, было доказано, что среднее ухо птиц, иначе, чем у млекопитающих, устроенное, работает по тем же законам и решает аналогичные задачи.

<<< Назад
Вперед >>>

Движения птиц многообразны : ходьба, прыжки, бег, лазанье, плавание, ныряние, полет. Они обеспечиваются как изменениями опорно-мышечной системы, так и преобразованиями других систем органов, осуществляющих координацию движений и ориентировку в пространстве, создающих необходимые энергетические резервы. Своеобразная особенность скелета птиц - хорошо выраженная пневматичность костей. Плоские кости имеют губчатое строение, сохраняя большую прочность при небольшой толщине. Трубчатые кости тоже тонкостенны, а полости внутри них заполнены частично воздухом, частично - костным мозгом. Эти особенности обеспечивают повышенную прочность отдельных костей и заметно их облегчают.

Нужно, однако, обратить внимание на то, что общая масса скелета составляет 8-18% массы тела птиц - примерно столько же, сколько у млекопитающих, у которых кости толще, а воздушные полости в них отсутствуют. Это объясняется тем, что у птиц облегчение костей позволило резко увеличить их длину (длина скелета ноги, а особенно крыла в несколько раз превышает длину туловища), заметно не повышая общей массы скелета.

Как и у других высших позвоночных, скелет птиц подразделяется на осевой- скелет и связанную с ним грудную клетку, череп, скелет конечностей и их поясов.

Осевой скелет - позвоночный столб подразделяется на пять отделов: шейный, грудной, поясничный, крестцовый и хвостовой. Число шейных позвонков изменчиво - от 11 до 23-25 (лебеди). Как и у пресмыкающихся, первый позвонок - атлас, или атлант, - имеет форму костного кольца, а второй - эпистрофей - сочленяется с ним зубовидным отростком; это обеспечивает подвижность головы относительно шеи. Остальные шейные позвонки птиц гетероцельного типа, длинное тело каждого позвонка спереди и сзади имеет седлообразную поверхность (в сагиттальном разрезе позвонки опистоцельны, а во фронтальном - предельны). Сочленение таких позвонков обеспечивает их значительную подвижность относительно друг друга в горизонтальной и вертикальной плоскостях. Прочность соединений позвонков усиливается наличием суставных отростков на основаниях верхних дуг, образующих между собой скользящие суставы.

Шейные ребра птиц рудиментарны и срастаются с шейными позвонками, образуя канал, по которому проходят позвоночная артерия и шейный симпатический нерв. Только последние одно-два шейных ребра сочленяются с шейными позвонками подвижно, однако до грудины они не доходят. Особенности шейных позвонков вместе со сложно дифференцированными шейными мышцами позволяют птицам свободно поворачивать голову на 180°, а некоторым "(совы, попугаи) и на 270°. Это делает возможным сложные и быстрые движения головой при схватывании подвижной добычи, чистке оперения, постройке гнезда; в полете позволяет, сгибая или разгибая шею, в определенных пределах менять положение центра тяжести, облегчает ориентировку и т. п.

Грудных позвонков у птиц 3-10. Они срастаются друг с другом, образуя спинную кость, и очень тугим суставом соединяются со сложным крестцом. Благодаря этому туловищный отдел осевого скелета становится неподвижным, что важно при полете (колебания туловища не мешают координации летательных движений). К грудным позвонкам подвижно причленяются ребра. Каждое ребро состоит из двух отделов - спинного и брюшного, подвижно сочленяющихся друг с другом и образующих угол, вершиной направленный назад. Верхний конец спинного отдела ребра подвижно причленяется к поперечному отростку и телу грудного позвонка, а нижний конец брюшного отдела - к краю грудины. Подвижное сочленение спинного и брюшного отделов ребер между собой и подвижное их соединение с позвоночным столбом и грудиной наряду с развитой реберной мускулатурой обеспечивают изменение объема полости тела. Это один из механизмов интенсификации дыхания. Прочность грудной клетки усиливается крючковидными отростками, укрепленными на спинных отделах и налегающих на последующее ребро. Большая грудина имеет вид тонкой широкой и длинной пластинки, на которой у всех птиц (кроме страусоподобных) расположен высокий киль грудины. Большие размеры грудины и ее киля обеспечивают место для прикрепления мощных мышц, двигающих крыло.

Все поясничные, крестцовые (их два) и часть хвостовых позвонков неподвижно срастаются друг с другом в монолитную кость - сложный крестец. Всего в него входят 10-22 позвонка, границы между которыми не видны. Со сложным крестцом неподвижно срастаются кости тазового пояса. Это обеспечивает неподвижность туловищного отдела и создает прочную опору для задних конечностей. Число свободных хвостовых позвонков не превышает 5-9. Последние 4-8 хвостовых позвонков сливаются в уплощенную с боков копчиковую кость, к которой веером прикрепляются основания рулевых перьев. Укорочение хвостового отдела и образование пигостиля обеспечивает прочную опору хвосту при сохранении его подвижности. Это важно, так как хвост не только выполняет функцию добавочной несущей плоскости, но участвует и в управлении полетом (как тормоз и руль).

Череп птиц похож на череп рептилий и может быть отнесен к диапсидному типу с редуцированной верхней дугой. Череп тропибазальный (глазницы расположены впереди головного мозга), образован тонкими губчатыми костями, границы между которыми отчетливо видны лишь у молодых птиц. Это, видимо, связано с тем, что соединение при помощи швов невозможно из-за небольшой толщины костей. Поэтому череп относительно легок. Своеобразна по сравнению с пресмыкающимися и его форма: резко увеличен объем мозговой коробки, глазницы большие, челюсти лишены зубов (у современных птиц) и формируют клюв. Смещение большого затылочного отверстия и затылочного мыщелка на дно черепа увеличивает подвижность головы относительно шеи и туловища.

Большое затылочное отверстие окружено четырьмя затылочными костями: основной, двумя боковыми и верхней. Основная и боковые затылочные кости образуют единственный (как и у пресмыкающихся) затылочный мыщелок, сочленяющийся с первым шейным позвонком. Три ушные кости, окружающие слуховую капсулу, сливаются с прилегающими костями и между собой. В полости среднего уха находится лишь одна слуховая косточка - стремечко. Бока и крышу мозговой коробки образуют парные покровные кости: чешуйчатые, теменные, лобные и боковые клиновидные. Дно черепа образует покровная основная клиновидная кость, которую закрывает покровная основная височная кость, и клювовидный отросток парасфеноида. У его переднего конца лежит сошник, по краям которого расположены хоаны.

Верхняя часть клюва - надклювье - образована сильно разросшимися и слившимися предчелюстными костями. Гребень клюва, укрепленный носовыми костями, соединяется с лобными костями и передней стенкой глазницы, образованной разросшейся средней обонятельной костью. Составляющие лишь заднюю часть надклювья верхнечелюстные кости отростками сливаются с небными костями. К задненаружному краю верхнечелюстной кости прирастает тонкая костная перекладина, состоящая из двух слившихся костей - скуловой и квадратно-скуловой. Это типичная нижняя дуга диапсидного черепа, ограничивающая снизу глазницу и височную яму. Квадратно-скуловая кость сочленяется с квадратной костью, нижний конец которой образует суставную поверхность для сочленения с нижней челюстью, а удлиненный верхний конец суставом прикрепляется к чешуйчатой и переднеушной костям. Небные кости концами налегают на клювовидный отросток парасфеноида и суставом соединяются с парными крыловидными костями, которые в свою очередь суставом связаны с квадратными костями соответствующей стороны.

Нога птицы (без кожи), сидящей на ветке

Такое строение костного неба имеет важное значение для свойственного большинству птиц кинетизма (подвижности) надклювья. При сокращении мышц, соединяющих направленный вперед глазничный отросток квадратной кости со стенкой глазницы, нижний конец квадратной кости смещается вперед и сдвигает как небные и крыловидные кости (их соединение друг с другом может скользить по клювовидному отростку), так и квадратно-скуловые и скуловые. Давление по этим костным мостикам передается на основание надклювья и благодаря, перегибу костей в области "переносицы" вершина надклювья сдвигается кверху. В зоне перегиба надклювья кости очень тонки, а у некоторых видов (гуси и др.) здесь образуется сустав. При сокращении мышц, соединяющих череп с нижней челюстью, вершина клюва сдвигается книзу. Подвижность костного неба в сочетании со сложно дифференцированными жевательными мышцами обеспечивают разнообразные, тонко дифференцированные движения клюва при схватывании добычи, чистке оперения, постройке гнезд. Вероятно, подвижность шеи и приспособление клюва к многообразным движениям способствовали превращению передних конечностей в крылья, так как замещали некоторые из выполняемых ими второстепенных функций (помощь в захвате пищи, чистка тела и др.).

Нижняя часть клюва - подклювье или нижняя челюсть - образуется слиянием ряда костей, из которых более крупные зубная, сочленовная и угловая. Челюстной сустав формируют сочленовная и квадратная кости. Движения надклювья и подклювья очень четко координированы благодаря дифференцированной системе жевательных мышц. Подъязычный аппарат состоит из удлиненного тела, поддерживающего основание языка, и длинных рожек. У некоторых птиц, например дятлов, очень длинные рожки огибают весь череп. При сокращении подъязычной мускулатуры рожки скользят по соединительнотканному ложу и язык выдвигается из ротовой полости почти на длину клюва.

Скелет передней конечности, превратившейся у птиц в крыло, подвергся значительным изменениям. Мощная трубчатая кость - плечо - имеет уплощенную головку, что существенно ограничивает вращательные движения в плечевом суставе, обеспечивая устойчивость крыла в полете. Дистальный конец плеча сочленяется с двумя костями предплечья: более прямой и тонкой лучевой и более мощной локтевой, на задневерхней стороне которой видны бугорки - места прикрепления очинов второстепенных маховых. Из проксимальных элементов запястья сохраняются лишь две маленькие самостоятельные косточки, которые связками соединяются с костями предплечья. Кости дистального ряда запястья и все кости пясти сливаются в общую пястно-запястную кость, или пряжку. Резко редуцируется скелет пальцев: хорошо развиты только две фаланги второго пальца, продолжающие ось пряжки. От первого и третьего пальца сохраняется лишь по одной короткой фаланге. Первостепенные маховые прикрепляются к пряжке и к фалангам второго пальца. К фаланге первого пальца прикрепляется несколько перьев "крылышка".

Преобразование кисти (образование пряжки, редукция пальцев, малая подвижность сустава) обеспечивают прочную опору первостепенным маховым, испытывающим в полете наибольшие нагрузки. Характер поверхностей всех суставов таков, что обеспечивает легкую подвижность лишь в плоскости крыла; возможность вращательных движений резко ограничена. Это предохраняет выворачивание крыла, позволяет птице без усилий менять площадь крыла в полете и складывать его в покое. Соединяющая кистевой сгиб с плечевым суставом складка кожи - летательная перепонка - образует эластичный передний край крыла, сглаживающий локтевой сгиб и предотвращающий образование здесь завихрений воздуха. Характерная для каждого вида форма крыла определяется длиной скелетных элементов и второстепенных и первостепенных маховых.

Приспособления к полету отчетливо выражены и в поясе передних конечностей. Мощные коракоиды расширенными нижними концами прочно соединяются малоподвижными суставами передним концом грудины. Узкие и длинные лопатки срастаются со свободными концами коракоидов, образуя глубокую суставную впадину для головки плеча. Крепость костей плечевого пояса и их прочное соединение с грудиной обеспечивает крыльям опору в полете. Удлинение коракоидов увеличивает площадь прикрепления мышц крыла и выносит вперед на уровень шейных позвонков, плечевой сустав; это позволяет укладывать крыло сбоку туловища в покое и выгодно аэродинамически, ибо в полете центр тяжести птицы оказывается на линии, соединяющей центры площадей крыльев (обеспечивается устойчивость). Ключицы срастаются в вилочку, расположенную между свободными концами коракоидов и выполняющую роль амортизатора, смягчающего толчки при взмахах крыла.

Задние конечности и тазовой пояс испытывают преобразования, связанные с тем, что при движении по суше на них переносится вся тяжесть тела. Скелет задней конечности образован мощными трубчатыми костями. Общая длина ноги даже у "коротконогих" видов превышает длину туловища. Проксимальный конец бедра заканчивается сочленяющейся с тазом округлой головкой, а на дистальном конце рельефные поверхности образуют с костями голени коленный сустав. Его укрепляет лежащая в мускульном сухожилии коленная чашечка. Основной элемент голени - костный комплекс, который можно назвать голено-предплюсна, или тибиотарзус, так как к хорошо развитой большой берцовой кости прирастает, образуя ее дистальный конец, верхний ряд косточек предплюсны. Малая берцовая кость сильно редуцирована и прирастает к верхней части наружной поверхности большой берцовой кости. Ее редукция связана с тем, что у большинства птиц все элементы конечности двигаются в одной плоскости, вращательные движения в дистальной части конечности ограничены.

Дистальный (нижний) ряд косточек предплюсны и все кости плюсны сливаются в единую кость - цевку, или плюсно-предплюсну; появляется добавочный рычаг, увеличивающий длину шага. Так как подвижный сустав располагается между двумя рядами элементов предплюсны (между костями, слившимися с большой берцовой костью, и элементами, вошедшими в состав цевки), то его, как и у пресмыкающихся, называют интертарзальным. К дистальному концу цевки прикрепляются фаланги пальцев.

Как и у всех наземных позвоночных, тазовый пояс птиц образован срастающимися тремя парами костей. Широкая и длинная подвздошная кость срастается со сложным крестцом. К ее наружному краю прирастает седалищная кость, с которой срастается палочковидная лобковая кость. Все три кости участвуют в образовании вертлужной впадины, в которую входит, образуя тазобедренный сустав, головка бедра. Лобковые и седалищные кости у птиц не срастаются друг с другом по средней линии тела; такой таз называют открытым. Он дает возможность откладывать крупные яйца и, может быть, способствует интенсификации дыхания, не ограничивая подвижности брюшной стенки в тазовой области.

Как? Почему?»

Турнир проводится как внеклассное мероприятие. Желательно проводить его отдельно для 7-8 и 9-11 классов. За 1 раз можно провести 2 тура игры по 3 участника или 1 тур с 6 участниками. В этом случае разминку и конкурс красноречия разумнее провести сразу для всех участников. Предварительно проводится жеребьёвка для очерёдности выступлений в конкурсе красноречия и при выполнении заданий игры. С темой для выступления в конкурсе красноречия участники знакомятся перед началом игры. В третьем туре каждый участник выполняет 3 задания. В порядке, определённом жеребьёвкой каждый участник по таблице сам выбирает номер вопроса, на который будет отвечать. После этого он получает выбранное задание и выполняет его. После выполнения первого задания в таком же порядке участники выполняют сначала второе задание, а затем – третье. За каждое задание экспертная группа из учителей предметников и особо отличившихся в предыдущих играх учащихся выставляет участникам максимально 2 балла. Задание, с которым не справился участник, выполняют зрители (им тоже присваиваются такие же баллы). После получения правильного ответа (и когда с заданием никто не справился) участникам сообщается правильный ответ на задание. В конце игры, участник, желающий поправить своё турнирное положение может идти ва-банк с риском потерять все заработанные в игре баллы. Максимальное количество баллов за выполнение такого задания можно взять в два-три раза больше, чем за одно задание игры, поэтому для этого этапа игры берутся более сложные задания. В процессе подготовки к игре организатор тщательно подбирает чётко сформулированные задания и ответы к ним из разных предметов и составляет таблицу с номерами заданий. Экспертная группа по итогам всех этапов игры объявляет победителя турнира и дату проведения следующей игры. По итогам всех туров игры за год выявляется чемпион (рыцарь) учебного года.