Есть ли предел. Предел функции

Пределы доставляют всем студентам, изучающим математику, немало хлопот. Чтобы решить предел, порой приходится применять массу хитростей и выбирать из множества способов решения именно тот, который подойдет для конкретного примера.

В этой статье мы не поможем вам понять пределы своих возможностей или постичь пределы контроля, но постараемся ответить на вопрос: как понять пределы в высшей математике? Понимание приходит с опытом, поэтому заодно приведем несколько подробных примеров решения пределов с пояснениями.

Понятие предела в математике

Первый вопрос: что это вообще за предел и предел чего? Можно говорить о пределах числовых последовательностей и функций. Нас интересует понятие предела функции, так как именно с ними чаще всего сталкиваются студенты. Но сначала - самое общее определение предела:

Допустим, есть некоторая переменная величина. Если эта величина в процессе изменения неограниченно приближается к определенному числу a , то a – предел этой величины.

Для определенной в некотором интервале функции f(x)=y пределом называется такое число A , к которому стремится функция при х , стремящемся к определенной точке а . Точка а принадлежит интервалу, на котором определена функция.

Звучит громоздко, но записывается очень просто:

Lim - от английского limit - предел.

Существует также геометрическое объяснение определения предела, но здесь мы не будем лезть в теорию, так как нас больше интересует практическая, нежели теоретическая сторона вопроса. Когда мы говорим, что х стремится к какому-то значению, это значит, что переменная не принимает значение числа, но бесконечно близко к нему приближается.

Приведем конкретный пример. Задача - найти предел.

Чтобы решить такой пример, подставим значение x=3 в функцию. Получим:

Кстати, если Вас интересуют , читайте отдельную статью на эту тему.

В примерах х может стремиться к любому значению. Это может быть любое число или бесконечность. Вот пример, когда х стремится к бесконечности:

Интуитивно понятно, что чем больше число в знаменателе, тем меньшее значение будет принимать функция. Так, при неограниченном росте х значение 1/х будет уменьшаться и приближаться к нулю.

Как видим, чтобы решить предел, нужно просто подставить в функцию значение, к которому стремиться х . Однако это самый простой случай. Часто нахождение предела не так очевидно. В пределах встречаются неопределенности типа 0/0 или бесконечность/бесконечность . Что делать в таких случаях? Прибегать к хитростям!


Неопределенности в пределах

Неопределенность вида бесконечность/бесконечность

Пусть есть предел:

Если мы попробуем в функцию подставить бесконечность, то получим бесконечность как в числителе, так и в знаменателе. Вообще стоит сказать, что в разрешении таких неопределенностей есть определенный элемент искусства: нужно заметить, как можно преобразовать функцию таким образом, чтобы неопределенность ушла. В нашем случае разделим числитель и знаменатель на х в старшей степени. Что получится?

Из уже рассмотренного выше примера мы знаем, что члены, содержащие в знаменателе х, будут стремиться к нулю. Тогда решение предела:

Для раскрытия неопределенностей типа бесконечность/бесконечность делим числитель и знаменатель на х в высшей степени.


Кстати! Для наших читателей сейчас действует скидка 10% на

Еще один вид неопределенностей: 0/0

Как всегда, подстановка в функцию значения х=-1 дает 0 в числителе и знаменателе. Посмотрите чуть внимательнее и Вы заметите, что в числителе у нас квадратное уравнение. Найдем корни и запишем:

Сократим и получим:

Итак, если Вы сталкиваетесь с неопределенностью типа 0/0 – раскладывайте числитель и знаменатель на множители.

Чтобы Вам было проще решать примеры, приведем таблицу с пределами некоторых функций:

Правило Лопиталя в пределах

Еще один мощный способ, позволяющий устранить неопределенности обоих типов. В чем суть метода?

Если в пределе есть неопределенность, берем производную от числителя и знаменателя до тех пор, пока неопределенность не исчезнет.

Наглядно правило Лопиталя выглядит так:

Важный момент : предел, в котором вместо числителя и знаменателя стоят производные от числителя и знаменателя, должен существовать.

А теперь – реальный пример:

Налицо типичная неопределенность 0/0 . Возьмем производные от числителя и знаменателя:

Вуаля, неопределенность устранена быстро и элегантно.

Надеемся, что Вы сможете с пользой применить эту информацию на практике и найти ответ на вопрос "как решать пределы в высшей математике". Если нужно вычислить предел последовательности или предел функции в точке, а времени на эту работу нет от слова «совсем», обратитесь в профессиональный студенческий сервис за быстрым и подробным решением.

Как быстро может бежать человек? Как высоко и далеко он способен прыгнуть? И есть ли вообще предел физическим возможностям человека или результаты будут расти бесконечно?

Одним из первых над этим вопросом задумался тренер из Калифорнии Брюс Гамильтон, который в 1934 году выступил в роли предсказателя предельных рекордов в легкой атлетике. По его мнению, человек никогда не прыгнет выше рубежа 2 метров 11 сантиметров, а в беге на 100 метров наивысшим результатом будет 10,1 секунды. Большей нагрузки, по мнению Гамильтона, мышцы человека просто не способны выдержать.

В то время мировые рекорды легкоатлетов можно было считать близкими к предельным: на стометровке рекордсменом был американец Р. Меткальф с результатом 10,3 секунды, а результат лучшего прыгуна в высоту составлял 2 метра 6 сантиметров. Такую планку смог преодолеть У. Мартни из США. А значит, спринтеры могли добавить еще 0,2 секунды, а прыгуны – 5 сантиметров. И все – рекорды на этом закончатся? Ничего подобного, через несколько лет все предсказания Гамильтона рухнули.

В конце восьмидесятых физиологи назвали новые рубежи: бег на 100 метров – 9, 58 секунды, прыжки в высоту – 2 метра 56 сантиметров, прыжки в длину – 10 метров 33 сантиметра. А вот для марафонцев была установлена планка в 1 час 58 минут и 22 секунды.

Прошло еще 30 лет, и что мы видим? Мировой рекорд в беге на 100 метров, установленный легендарным Усэйном Болтом, точно повторяет прогноз ученых: на турнире в Берлине 16 августа 2009 года он показал именно такой результат – 9, 58 секунды. Получается, что это был последний мировой рекорд на стометровке?

Несколько лет назад Джон Бренкус, ведущий передачи «Спортивная наука», заявил, что результаты в этой дисциплине будут расти еще очень долго. И даже сделал долгосрочный прогноз – к 2909 году лучшие легкоатлеты мира будут пробегать дистанцию быстрее 9 секунд. Можно только позавидовать практичности Бренкуса – кто же будет помнить о его прогнозах через 900 лет?

В марафонском беге Бренкус также сдвинул планку рекорда, по его расчетам, лучший марафонец всех времен и народов сможет преодолеть дистанцию за 1 час 57 минут и 57 секунд. Сейчас мировой рекорд принадлежит Деннису Кимето из

Кении – 2 часа 2 минуты 57 секунд. Это значит, что есть еше резерв ровно в 5 минут.

В прыжках все немного сложнее. Здесь рекорды явно замедлились, а до максимально обозначенной планки результатам еще расти и расти. Например, в далеком 1993 году кубинец Хавьер Сотомайор взял рубеж в 2 метра 45 сантиметров, и вот уже четверть века никто не может приблизиться к его рекорду.

А в прыжках в длину Боб Бимон на Олимпийских играх 1968 года совершил, как тогда говорили, прыжок в XXI век, улетев на 8 метров 90 сантиметров. До XXI века рекорд, правда, не дотянул – в 1991 году Майк Пауэлл достиг рубежа 8 метров 95 сантиметров. И все, дальше никто не может прыгнуть уже 27 лет. Интересно, что спортсмены, показавшие результаты близкие к достижению Пауэлла, давно завершили свою карьеру.

Описание:

В последние годы в журналах по архитектуре и инженерному оборудованию зданий можно встретить выражение «How Far Can We Go?», которое по смыслу означает «Есть ли предел инженерным возможностям?» и характеризует, как правило, оригинальные и уникальные инженерные решения по климатизации и энергоснабжению высотных зданий. Отличительная особенность таких инженерных решений состоит в том, что они не являются «наслоением» к архитектуре оболочки здания и его объемно-планировочным решениям, а являются органической частью самой архитектуры.

Есть ли предел инженерным возможностям

Ю. А. Табунщиков , президент НП «АВОК»

В последние годы в журналах по архитектуре и инженерному оборудованию зданий можно встретить выражение «How Far Can We Go?», которое по смыслу означает «Есть ли предел инженерным возможностям?» и характеризует, как правило, оригинальные и уникальные инженерные решения по климатизации и энергоснабжению высотных зданий. Отличительная особенность таких инженерных решений состоит в том, что они не являются «наслоением» к архитектуре оболочки здания и его объемно-планировочным решениям, а являются органической частью самой архитектуры.

Архитекторы первого демонстрационного энергоэффективного здания в Манчестере (штат Нью-Хэмпшер, США) Nicholas и Andrew Isaak писали в 1973 году: «Проектирование любого здания – всегда трудная задача, но проектирование энергоэффективного здания – это новый вызов и новое испытание, с которым архитекторы и инженеры встретились только сейчас».

Можно ли считать, что через 35 лет дан исчерпывающий ответ этому вызову? И да, и нет. Да – потому что к настоящему времени архитекторы построили много энергоэффективных зданий, которые, безусловно, являются произведениями архитектурного и инженерного искусства. Замечательными примерами здесь являются проекты архитектора Ken Yeang – здание главного офиса компании IBM, высотные здания Tokyo – Nara Tower и Bishopsgae Towers at Elephant & Castle, здание биоклиматической архитектуры «Ворота Дюссельдорфа», архитекторы Karl-Heinz Petzinka, Overdiek & Partners, здания Commerzbank во Франкфурте-на-Майне и London City Hall, архитектор Norman Foster. Нет – потому что к настоящему времени не создана теория проектирования энергоэффективных зданий. Сегодня энергоэффективное здание представляется как система независимых инновационных энергосберегающих решений. При этом оказывается не выявленным то обстоятельство, что эти независимые решения могут снижать их первоначальную эффективность, а в некоторых случаях приводить даже к отрицательному эффекту. В современной науке методом поиска наилучшего решения, к которому относится проектирование энергоэффективного здания, является метод системного анализа – это метод, занимающийся проблемами принятия решения, когда выбор альтернативы требует анализа сложной информации различной физической природы. Очевидно, что метод системного анализа должен явиться основой методологии проектирования энергоэффективных зданий.

Несмотря на уникальность архитектурных и инженерных решений таких зданий, а также других зданий, относящихся к этой категории, проведенный нами анализ позволяет выделить в общем виде признаки, характерные для всех уникальных зданий:

– гармонизация архитектурной оболочки здания с локальными особенностями климата района расположения здания;

– использование энергетических возможностей наружного климата и тепла земли для энергоснабжения здания;

– утилизация тепла солнечной радиации в тепловом балансе здания;

– использование конструкций остекления типа двойных фасадов для управления воздушными потоками, световым режимом и теплопоступлениями солнечной радиации;

– поэтажное, а не центральное устройство систем климатизации;

– максимальное использование естественной вентиляции помещений;

– максимальное использование естественного освещения помещений;

– интеллектуализация инженерного оборудования, а также заполнений световых проемов и остекленных поверхностей.

Наличие в здании перечисленных выше признаков еще не дает право отнести его к уникальным сооружениям. Здесь такое же различие, как между набором красок и картиной Леонардо Да Винчи «Тайная вечеря». Возникает естественный вопрос: можно ли на основе использования перечисленных выше признаков создать «наилучшее» здание. Ответ – «да!». Но в таком случае, не будет ли иметь место абсурдная ситуация, при которой будет тиражироваться одно и то же «наилучшее» здание? Конечно, нет. Во-первых, надо ответить на вопрос: что значит «наилучшее»? В смысле затрат энергии, строительных материалов, экологической чистоты и т. д. Во-вторых, «наилучшее» решение в многофакторных задачах не есть «точка», а есть некоторая область, в которой расположено множество «наилучших» решений. Есть еще один вопрос: зачем инвесторы идут на большие затраты, зная, что уникальные здания стоят значительно дороже? По нашему мнению, инвесторы идут на увеличение затрат по следующим обстоятельствам:

– уникальные здания легко и с интересом рекламируются и, следовательно, обеспечивают зданию коммерческую привлекательность и существенную прибыль инвестору;

– качество микроклимата в таких зданиях обеспечивает более высокую производительность труда;

– здание удовлетворяет не только сегодняшним экологическим требованиям, но будет удовлетворять также требованиям, предъявляемым сертификатом LEED – Leadership in Energy and Environmental Design Building (подробнее смотрите статью Ю. А. Табунщикова «Микроклимат и энергосбережение: пора понять приоритеты», журнал «АВОК» № 5, 2008).

Главными потребительскими качествами, которыми обладают современные уникальные высотные здания, являются: энергопотребление, качество среды обитания и сохранение природной среды. Архитекторы и инженеры создают все новые и новые шедевры в части реализации указанных потребительских качеств.

Сегодня на первое место уверенно выходит Китай. Международные эксперты отмечают, что «Китай перемахнул препятствие, стоящее на пути развития энергоэффективных зданий, и одним прыжком вошел в эру строительства сверхвысоких энергоэффективных зданий».

Убедительным подтверждением этого высказывания является строительство 71-этажного офисного здания, которое носит название Pearl River Tower, в портовом городе Guangzhou с населением в 6,6 млн человек в 100 км от Гонконга. Здание предназначено для главного офиса Табачной компании CNTC Guangdong Tobacco Company и по замыслу проектировщиков будет «самым энергоэффективным сверхвысоким зданием в мире». Эта амбициозная задача будет решена благодаря использованию инновационных энергоэффективных технологий, в том числе ветроэнергетики и фото-электричества. В результате, здание будет потреблять энергии на 60 % меньше, чем требует стандарт ANSI/ASHRAE/IESNA Standard 90.1-2004 «Energy Standard for Buildings Except Low-Rise Residential Buildings». Для того чтобы достичь такого эффекта, инвесторам потребуются дополнительные вложения в сумме 12 млн долл. США.

Рассмотрение особенностей обоснования проектных решений для здания Pearl River Tower показывает, что это широкомасштабные научные исследования, выполненные в различных исследовательских организациях, включающие методы математического и физического моделирования, а также использование специальных аэродинамических установок. И невольно с большим сожалением отмечаешь, что в настоящее время в России практически отсутствует раздел предпроектных исследований, что приводит, без всякого сомнения, к принятию слабо обоснованных и даже зачастую ошибочных решений.

Наиболее значимым, по мнению авторов проекта, инновационным техническим решением для здания Pearl River Tower является использование ветроэнергетических установок: четыре ветроэнергетические турбины с диаметром колеса 6 м встроены в отверстия ограждающих конструкций технических этажей здания – по две установки в каждом техническом этаже (рис. 1). Скорость ветра в городе Guangzhou на высоте расположения технических этажей невелика и равна 4 м/c. Однако за счет разности давлений на наветренном южном и заветренном северном фасадах скорость ветра в отверстиях увеличивается до 8 м/c.

Моделирование в аэродинамической трубе показало, что такая конструкция ветроэнергетической установки в 15 раз выше, чем у традиционных «ветряков», и обеспечивает покрытие 1 % энергетической потребности здания, что составляет примерно 10 000 кВт ч/год.

Кроме того, энергоснабжение здания также обеспечивается за счет использования фотоэлектрических солнечных панелей, расположенных на восточном и западном фасадах, а также в верхней части здания на площади более 1 500 м 2 . Еще 1 500 м 2 солнечных фотоэлектрических панелей предполагается разместить на солнцезатеняющих конструкциях западного фасада. В общей сложности мощность фотоэлектрических солнечных панелей составит 300 000 кВт ч и обеспечит 2 % энергетической потребности здания.

Из всех энергоэффективных конструктивных решений здания Pearl River Tower наибольший эффект экономии энергии обеспечивает использование охлаждающих потолочных панелей. В журналах «АВОК» (№№ 6, 7, 2003 г.) достаточно подробно описаны конструктивные решения охлаждающих потолочных панелей, особенности их применения и отмечены опасности, возникающие из-за возможности выпадения конденсата на их поверхностях. Особенность охлаждающих панелей здания Pearl River Tower состоит в том, что охлаждение осуществляется не воздухом, а водой. В результате того, что охлаждение помещений осуществляется охлаждающими потолочными панелями, нет необходимости подавать в помещение большое количество охлажденного воздуха, а необходимо подавать такое количество приточного воздуха, которое требуется для обеспечения качества воздушной среды помещения. Для предотвращения конденсатообразования осуществляется осушение поступающего в помещение воздуха в специальных теплообменных аппаратах, расположенных в технических этажах. Подача свежего воздуха в помещения осуществляется с помощью так называемой вытесняющей вентиляции , интегрированной в конструкцию пола.

Особой гордостью разработчиков проекта является интеллектуальный двухслойный (двойной) выполненный из стекла фасад. Семьдесят один этаж стекла, облучаемого тропическим солнцем, – это большая опасность перегрева помещения, огромные нагрузки на систему охлаждения, но, с другой стороны, и большой соблазн использовать огромное количество энергии в тепловом балансе здания. Задача была поставлена и решена на основе использования двойного остекленного фасада. Главная сложность состояла в том, что если конструктивные элементы двойного фасада не оптимизированы и их функционирование не интеллектуализировано, то могут быть утрачены все преимущества такой конструкции фасада. С этой целью проектировщики выполнили большой комплекс предпроектных исследований, в том числе создание специальных аэродинамических стендов. При этом конструкция фасада предусматривала устройство управляемых компьютером солнцезащитных устройств, встроенных в фасад с южной и северной сторон.

Еще одна особенность состоит в том, что вентиляция воздуха между стеклами фасада является частью общей аэродинамической системы здания. Здесь проектировщиками было выполнено математическое компьютерное моделирование. Главный инженер проекта, директор экологически чистых инженерных исследований компании SOM Roger Frechette говорит: «Высокая эффективность часто означает высокую сложность процессов и необходимость проведения сложных детальных расчетов. При движении большого объема воздуха у него появляется тенденция мигрировать естественным путем с маленькой скоростью. Это означает, что потоки будут существенно рассредоточенными и требуется высокий уровень моделирования». В журнале «АВОК» № 2, 2007 достаточно подробно описано устройство двухслойных (двойных) фасадов.

Полученный опыт

Несмотря на то что многое еще впереди, главный инженер проекта Roger Frechette, а также руководители проекта проф. Ray Sinclair и проф. Duncan Phillips уже составили список «выученных уроков».

Нашим специалистам интересно познакомиться с этими уроками.

Урок первый

Вовлекать людей на начальной стадии

Для проектирования высокоэффективного здания необходимо собрать вместе всех основных заинтересованных лиц на самой начальной стадии проектирования для достижения всеобщего взаимопонимания. Заинтересованные лица – это проектная команда, консультанты, подрядчики, представители городских властей, местных коммунальных служб, а также владелец здания.

Пример: одним из основных препятствий на стадии проектирования стал тот факт, что представители локальных электрических сетей не позволяли (или не могли позволить из-за отсутствия правовой основы) владельцу продавать электричество в сеть общего пользования. Эта проблема обнаружилась, когда проектирование уже велось полным ходом, и стала одним из ключевых факторов, не позволившим добиться цели – создания углеродно-нейтрального здания.

Урок второй

Баланс проектной команды

Правильный баланс специалистов важен для достижения так называемого «прагматического новаторства».

Roger Frechette говорит: «Все мы видели интригующие концепции проектирования, которые никогда не были реализованы из-за непрактичности отдельных деталей. Для полноценной реализации новаторских идей в крупном проекте проектная команда должна состоять из людей, которые могут вообразить нечто невозможное, но реализуемое специалистами, обладающими многолетним опытом разумной работы. Такое объединение личностей позволяет действительно реализовать на практике новаторские идеи». Эти обстоятельства проявились в полной мере при выборе конструкции двойного фасада и при исследованиях потоков воздуха в здании.

Урок третий

Эксплуатация и обслуживание

Высокоэффективное здание требует внимания даже после реализации проекта и ввода здания в эксплуатацию. Команда SOM объединилась с местным проектным институтом Guangzhou для разработки обучающих руководств, и владелец собирается нанять опытную организацию для эксплуатации здания.

Roger Frechette считает, что уникальная система климатизации здания, предусмотренная проектом, на самом деле

должна снизить объем усилий, необходимых для эксплуатации и обслуживания, в сравнении с традиционными зданиями. Например, излучающие потолочные системы, обслуживающие офисные этажи, устраняют необходимость использования установок с переменным расходом воздуха и вентиляторных доводчиков, минимизируют необходимое техническое обслуживание, такое как замена фильтров, очистка змеевиков, ремонт приводов воздушных заслонок и необходимость адресовать жалобы на шум вентиляционной системы – и, конечно, необходимость в балансировке и перебалансировке вентиляционной системы при приходе и уходе людей.

Урок четвертый

Взгляд в будущее

Несмотря на то что проект представлял многие трудности, для архитекторов и инженеров он оказался увлекательным и полезным. Они надеются, что технологии, используемые при проектировании сверхвысокого здания, станут более распространенными и что проект подвигнет других проектировщиков на использование высокоэффективных технологий.

«Мы находимся в середине экологического кризиса, связанного преимущественно с выбросами углерода в атмосферу, – говорит Roger Frechette. – Даже архитекторы и инженеры должны помнить, что здания создают больше выбросов, чем промышленность или транспорт. Нам необходимо адресовать эту проблему, и мы надеемся, что данный проект станет первым осторожным шагом в этом направлении. Или, возможно, одним громадным 71-этажным скачком».

Рисунки публикуются с разрешения SOM ARCHITECTURAL CONSULTANTS (SHANGHAI) CO., LTD.

Замуж вышла рано, в 18 лет. До этого встречались 3 года. Отношения не были безоблачными, был трения, сложности, расставания, примирения. Но мы приняли решение быть вместе. Отношения продолжали быть сложными, не могу себя похвалить, вела себя как ребенок: капризно, требовательно, мнила себя жертвой в некоторых ситуациях, хотя сейчас понимаю, что не хватало понимания, мудрости и просто на просто любви в наших отношениях. Мы не были готовы к самостоятельной, взрослой жизни, ступили на путь, который был для нас на тот момент слишком сложным. Доход был минимальным, денег катастрофически не хватало особенно с рождением через год нашего первенца.

Муж решил уехать на заработки, устроился, через три месяца мы переехали к нему на съемную квартиру. Месяца 3 были очень счастливы. Потом появились сложности, пришлось переехать в дом без удобств, нервы были на пределе, понимаю мужа сейчас, которому сайт приходилось нелегко. В одной из ссор получила первую оплеуху.

Лет 7 мы скитались по съемным квартирам. Было много всякого. В желании обеспечить семью муж перестал слишком нравственно выбирать работу. Потом стал пропадать сутками, стал пить, погуливать. Избивал пару раз сильно. Потом просил прощения. На время все менялось, потом по новой: гулянки, пьянки, игровые автоматы, полгода в тюрьме. Обещание, что все будет по-другому. Удар в лицо в первый же день выхода из тюрьмы. Я упорно не хотела видеть в любимом человеке монстра. Капризно требовала поменять свою жизнь, не понимая, что корни запрятаны на порядок глубже. Периодические ссоры, примирения, затишья, бури. Было многое.

Почему не уходила? Пыталась, но отказывалось мое сознание видеть в нем чужого человека. Он был родным до одури. Таким порочным и ласковым, зверем и котенком, ангелом и бесом. Не могла я уйти от него, то была боль, сильная, но моя, родная боль. Если бы я еще понимала, что истериками и криками не добиться любви и взаимности… Я, как слепой котенок, металась по жизни клетке, сайт не зная, куда себя деть.

Второй тюремный срок он получил в прошлом году за воровство. Это для меня было ударом. Унижала сама мысль, что отец моих детей – вор. Не могла я смириться с этим. Потом успокоилась, общались по телефону. Вроде как решили, что попробуем восстановить нашу семейную жизнь – отец он замечательный. Потом пропал на 2 месяца. При пересылке в другой лагерь не было возможности общаться.

А я влюбилась, как девочка, как ребенок, несмотря на свои 30 лет. Мне не нравиться характер того человека, не в восторге от его внешности, к тому же он женат второй раз и надежды быть вместе нет и не хочется. Не сможем мы быть вместе. Не хочу разрушать его семью, да и люди мы слишком разные, и не хочу, чтобы мои дети росли с отчимом, когда у них родной отец есть. Было несколько встреч с человеком, который появился в моей жизни. У меня такого не было никогда. Чувства на уровне запаха, ощупи. Какое-то глубокое влечение, желание чтобы он был счастливым, сайт пусть не со мной, но чтобы был. Счастье просто от его улыбки. Сомневаюсь, что он относился ко всему так же.

Первые шаги к сближению сделал он, я не отказала, потому что с первого взгляда поняла, что этот человек будет со мной, будто знала его сто лет. Я не хотела серьезных отношений. Я хотела просто побыть немного счастливой. Эти отношения не имеют четкого начала и конца. Мы не встречаемся сейчас, что будет дальше, не знаю.

Муж вернулся. Хотела развестись, чтобы все было честно. Он остановил меня, объяснил, что многое понял, что мы для него многое значим. Доказал свои слова тем, что отказался от наркотиков (подсел в тюрьме, оказывается, бывает и так). Несколько месяцев не употребляет наркотики (кто-то сейчас подумает, что это не показатель – сама знаю, переживаю по этому поводу), устроился на работу, правда, далеко от нас, старается пересылать нам деньги. И обещает, что все у нас наладиться и все будет хорошо. Я верю, верю в его желание, верю, что все будет хорошо, только чувства уже не сайт те и сердце стучит уже совсем по-другому. Время определит все по своим местам, я не хочу жить во лжи и не хочу причинять никому боль. Я просто хочу быть счастлива, любить и быть любимой.

Моя семья мне очень важна, важно счастье моих детей, которые без ума от папы. А для меня он в любом случае родной и близкий человек. Хороший отец, замечательный любовник. Прошу Бога только об одном – дать ему силы не возвращаться к наркотикам, преступной жизни. Ты мне очень нужен, важен. Ты мой родной человек!

Предел функции - число a будет пределом некоторой изменяемой величины, если в процессе своего изменения эта переменная величина неограниченно приближается к a .

Или другими словами, число A является пределом функции y = f (x) в точке x 0 , если для всякой последовательности точек из области определения функции , не равных x 0 , и которая сходится к точке x 0 (lim x n = x0) , последовательность соответствующих значений функции сходится к числу A .

График функции, предел которой при аргументе, который стремится к бесконечности, равен L :

Значение А является пределом (предельным значением) функции f (x) в точке x 0 в случае, если для всякой последовательности точек , которая сходится к x 0 , но которая не содержит x 0 как один из своих элементов (т.е. в проколотой окрестности x 0 ), последовательность значений функции сходится к A .

Предел функции по Коши.

Значение A будет являться пределом функции f (x) в точке x 0 в случае, если для всякого вперёд взятого неотрицательного числа ε будет найдено соответствующее ему неотрицательно число δ = δ(ε) такое, что для каждого аргумента x , удовлетворяющего условию 0 < | x - x0 | < δ , будет выполнено неравенство | f (x) A | < ε .

Будет очень просто, если вы понимаете суть предела и основные правила нахождения его. То, что предел функции f (x) при x стремящемся к a равен A , записывается таким образом:

Причем значение, к которому стремится переменная x , может быть не только числом, но и бесконечностью (∞), иногда +∞ или -∞, либо предела может вообще не быть.

Чтоб понять, как находить пределы функции , лучше всего посмотреть примеры решения.

Необходимо найти пределы функции f (x) = 1/ x при:

x → 2, x → 0, x ∞.

Найдем решение первого предела. Для этого можно просто подставить вместо x число, к которому оно стремится, т.е. 2, получим:

Найдем второй предел функции . Здесь подставлять в чистом виде 0 вместо x нельзя, т.к. делить на 0 нельзя. Но мы можем брать значения, приближенные к нулю, к примеру, 0,01; 0,001; 0,0001; 0,00001 и так далее, причем значение функции f (x) будет увеличиваться: 100; 1000; 10000; 100000 и так далее. Т.о., можно понять, что при x → 0 значение функции, которая стоит под знаком предела, будет неограниченно возрастать, т.е. стремиться к бесконечности. А значит:

Касаемо третьего предела. Такая же ситуация, как и в прошлом случае, невозможно подставить в чистом виде. Нужно рассмотреть случай неограниченного возрастания x . Поочередно подставляем 1000; 10000; 100000 и так далее, имеем, что значение функции f (x) = 1/ x будет убывать: 0,001; 0,0001; 0,00001; и так далее, стремясь к нулю. Поэтому:

Необходимо вычислить предел функции

Приступая к решению второго примера, видим неопределенность . Отсюда находим старшую степень числителя и знаменателя - это x 3 , выносим в числителе и знаменателе его за скобки и далее сокращаем на него:

Ответ

Первым шагом в нахождении этого предела , подставим значение 1 вместо x , в результате чего имеем неопределенность . Для её решения разложим числитель на множители , сделаем это методом нахождения корней квадратного уравнения x 2 + 2 x - 3 :

D = 2 2 - 4*1*(-3) = 4 +12 = 16 D = √16 = 4

x 1,2 = (-2 ± 4) / 2 x 1 = -3; x 2 = 1.

Таким образом, числитель будет таким:

Ответ

Это определение его конкретного значения или определенной области, куда попадает функция, которая ограничена пределом.

Чтобы решить пределы, следуйте правилам:

Разобравшись в сути и основных правилах решения предела , вы получите базовое понятие о том, как их решать.