Десятичная периодическая дробь в обыкновенную. Бесконечные периодические дроби

Как известно, множество рациональных чисел (Q) включает в себя множества целых чисел (Z), которое в свою очередь включает множество натуральных чисел (N). Помимо целых чисел в рациональные числа входят дроби.

Почему же тогда все множество рациональных чисел рассматривают иногда как бесконечные десятичные периодические дроби? Ведь кроме дробей, они включают и целые числа, а также непериодические дроби.

Дело в том, что все целые числа, а также любую дробь можно представить в виде бесконечной периодической десятичной дроби. То есть для всех рациональных чисел можно использовать одинаковый способ записи.

Как представляется бесконечная периодическая десятичная дробь? В ней повторяющуюся группу цифр после запятой берут в скобки. Например, 1,56(12) - это дробь, у которой повторяется группа цифр 12, т. е. дробь имеет значение 1,561212121212... и так без конца. Повторяющаяся группа цифр называется периодом.

Однако в подобном виде мы можем представить любое число, если будем считать его периодом цифру 0, которая также повторяется без конца. Например, число 2 - это то же самое, что 2,00000.... Следовательно, его можно записать в виде бесконечной периодической дроби, т. е. 2,(0).

То же самое можно сделать и с любой конечной дробью. Например:

0,125 = 0,1250000... = 0,125(0)

Однако на практике не используют преобразование конечной дроби в бесконечную периодическую. Поэтому разделяют конечные дроби и бесконечные периодические. Таким образом, правильнее говорить, что к рациональным числам принадлежат

  • все целые числа,
  • конечные дроби,
  • бесконечные периодические дроби.

При этом просто помнят, что целые числа и конечные дроби представимы в теории в виде бесконечных периодических дробей.

С другой стороны, понятия конечной и бесконечной дроби употребимы к десятичным дробям. Если говорить об обыкновенных дробях, то как конечную, так и бесконечную десятичную дробь можно однозначно представить в виде обыкновенной дроби. Значит, с точки зрения обыкновенных дробей, периодические и конечные дроби - это одно и то же. Кроме того, целые числа также могут быть представлены в виде обыкновенной дроби, если представить, что мы делим это число на 1.

Как представить десятичную бесконечную периодическую дробь в виде обыкновенной? Чаще используют примерно такой алгоритм:

  1. Приводят дробь к виду, чтобы после запятой оказался только период.
  2. Умножают бесконечную периодическую дробь на 10 или 100 или … так, чтобы запятая передвинулась вправо на один период (т. е. один период оказался в целой части).
  3. Приравнивают исходную дробь (a) переменной x, а полученную путем умножения на число N дробь (b) - к Nx.
  4. Из Nx вычитают x. Из b вычитаю a. Т. е. составляют уравнение Nx – x = b – a.
  5. При решении уравнения получается обыкновенная дробь.

Пример перевода бесконечной периодической десятичной дроби в обыкновенную дробь:
x = 1,13333...
10x = 11,3333...
10x * 10 = 11,33333... * 10
100x = 113,3333...
100x – 10x = 113,3333... – 11,3333...
90x = 102
x =

Периодическая дробь

бесконечная десятичная дробь, в которой, начиная с некоторого места, стоит только периодически повторяющаяся определённая группа цифр. Например, 1,3181818...; короче эту дробь записывают так: 1,3(18), то есть помещают период в скобки (и говорят: «18 в периоде»). П. д. называется чистой, если период начинается сразу после запятой, например 2(71) = 2,7171..., и смешанной, если после запятой имеются цифры, предшествующие периоду, например 1,3(18). Роль П. д. в арифметике обусловлена тем, что при представлении рациональных чисел, то есть обыкновенных (простых) дробей, десятичными дробями, всегда получаются либо конечные, либо периодические дроби. Точнее: конечная десятичная дробь получается в том случае, когда знаменатель несократимой простой дроби не содержит других простых множителей, кроме 2 и 5; во всех других случаях получается П. д., и притом чистая, если знаменатель данной несократимой дроби вовсе не содержит множителей 2 и 5, и смешанная, если хотя бы один из этих множителей содержится в знаменателе. Всякая П. д. может быть обращена в простую дробь (то есть она равна некоторому рациональному числу). Чистая П. д. равна простой дроби, числителем которой служит период, а знаменатель изображается цифрой 9, написанной столько раз, сколько цифр в периоде; при обращении в простую дробь смешанной П. д. числителем служит разность между числом, изображаемым цифрами, предшествующими второму периоду, и числом, изображаемым цифрами, предшествующими первому периоду; для составления знаменателя надо написать цифру 9 столько раз, сколько цифр в периоде, и приписать справа столько нулей, сколько цифр до периода. Эти правила предполагают, что данная П. д. правильная, то есть не содержит целых единиц; в противном случае целая часть учитывается особо.

Известны также правила определения длины периода П. д., соответствующей данной обыкновенной дроби. Например, для дроби a/p , где р - простое число и 1 ≤ a p - 1, длина периода является делителем р - 1. Так, для известных приближений к числу (см. Пи) 22 / 7 и 355 / 113 период равен 6 и 112 соответственно.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Периодическая дробь" в других словарях:

    Бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определенная группа цифр (период), напр. 0,373737... чисто периодическая дробь или 0,253737... смешанная периодическая дробь … Большой Энциклопедический словарь

    Дробь, бесконечная дробь Словарь русских синонимов. периодическая дробь сущ., кол во синонимов: 2 бесконечная дробь (2) … Словарь синонимов

    Десятичная дробь, ряд цифр которой повторяется в одном и том же порядке. Например, 0,135135135… есть п. д., которой период 135 и которая равна простой дроби 135/999 = 5/37. Словарь иностранных слов, вошедших в состав русского языка. Павленков Ф … Словарь иностранных слов русского языка

    Десятичная дробь дробь со знаменателем 10n, где n натуральное число. Имеет особую форму записи: целая часть в десятичной системе счисления, затем запятая и затем дробная часть в десятичной системе счисления, причём количество цифр дробной части … Википедия

    Бесконечная десятичная дробь, в которой, начиная с некоторого места, периодически повторяется определённая группа цифр (период); например, 0,373737... чисто периодическая дробь или 0,253737... смешанная периодическая дробь. * * * ПЕРИОДИЧЕСКАЯ… … Энциклопедический словарь

    Бесконечная десятичная дробь, в к рой, начиная с нек рого места, периодически повторяется определ. группа цифр (период); напр., 0,373737... чисто П. д. или 0,253737... смешанная П. д … Естествознание. Энциклопедический словарь

    См. часть... Словарь русских синонимов и сходных по смыслу выражений. под. ред. Н. Абрамова, М.: Русские словари, 1999. дробь мелочь, часть; дунст, шарик, шрот, картечь; дробное число Словарь русских синонимов … Словарь синонимов

    периодическая десятичная дробь - — [Л.Г.Суменко. Англо русский словарь по информационным технологиям. М.: ГП ЦНИИС, 2003.] Тематики информационные технологии в целом EN circulating decimalrecurring decimalperioding decimalperiodic decimalperiodical decimal … Справочник технического переводчика

    Если делится какое нибудь целое число а на другое целое число b, т. е. ищется число x, удовлетворяющее условию bx=а, то могут представиться два случая: или в ряду целых чисел найдется число х, которое этому условию удовлетворит, или же окажется,… … Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

    Дробь, знаменатель которой есть целая степень числа 10. Д. д. пишут без знаменателя, отделяя в числителе справа запятой столько цифр, сколько нулей содержится в знаменателе. Например, В такой записи часть, стоящая слева… … Большая советская энциклопедия

Бывает, что для удобства расчетов нужно перевести обыкновенную дробь в десятичную и наоборот. О том, как это делать, мы поговорим в данной статье. Разберем правила перевода обыкновенных дробей в десятичные и обратно, а также приведем примеры.

Yandex.RTB R-A-339285-1

Мы будем рассматривать перевод обыкновенных дробей в десятичные, придерживаясь определенной последовательности. Во первых, рассмотрим, как в десятичные переводятся обыкновенные дроби со знаменателем, кратным 10: 10, 100, 1000 и т.д.Дроби с такими знаменателями, по сути, являются, более громоздкой записью десятичных дробей.

Далее мы рассмотрим, как переводить в десятичные дроби обыкновенные дроби с любым, не только кратным 10, знаменателем. Отметим, что при обращении обыкновенных дробей в десятичные получаются не только конечные десятичные, но и бесконечные периодические десятичные дроби.

Приступим!

Перевод обыкновенных дробей со знаменателями 10, 100, 1000 и т.д. в десятичные дроби

Первым делом, скажем, что некоторые дроби нуждаются в определенной подготовке перед обращением в десятичный вид. В чем она заключается? Перед цифрой, стоящей в числителе, необходимо дописать столько нулей, чтобы количество цифр числителя стало равно числу нулей в знаменателе. Например, для дроби 3100 число 0 необходимо один раз дописать слева от 3 в числителе. Дробь 610, согласно изложенному выше правилу, не нуждается в доработке.

Рассмотрим еще один пример, после чего сформулируем правило, которым особенно удобно пользоваться на первых порах, пока опыта в обращении дробей не так много. Так, дробь 1610000 после дописывания нулей в числителе будет иметь вид 001510000.

Как перевести обыкновенную дробь со знаменателем 10, 100, 1000 и т.д. в десятичную?

Правило перевода обыкновенных правильных дробей в десятичные

  1. Записываем 0 и ставим после него запятую.
  2. Записываем число из числителя, которое получилось после дописывания нулей.

Теперь перейдем к примерам.

Пример 1. Перевод обыкновенных дробей в десятичные

Переведем обыкновенную дробь 39 100 в десятичную.

Сначала смотрим на дробь и видим, что никаких подготовительных действий проводить не нужно - количество цифр в числителе совпадает с количеством нулей в знаменателе.

Следуя правилу, записываем 0 , ставим после него десятичную запятую и записываем число из числителя. Получаем десятичную дробь 0 , 39 .

Разберем решение еще одного примера по этой теме.

Пример 2. Перевод обыкновенных дробей в десятичные

Запишем дробь 105 10000000 в виде десятичной дроби.

Количество нулей в знаменателе равно 7 , а в числителе только три цифры. Допишем перед числом в числителе еще 4 нуля:

0000105 10000000

Теперь записываем 0 , ставим после него десятичную запятую и записываем число из числителя. Получаем десятичную дробь 0 , 0000105 .

Рассмотренные во всех примерах дроби - обыкновенные правильные дроби. Но как перевести неправильную обыкновенную дробь в десятичную? Сразу скажем, что необходимость в подготовке с дописыванием нулей для таких дробей отпадает. Сформулируем правило.

Правило перевода обыкновенных неправильных дробей в десятичные

  1. Записываем число, которое находится в числителе.
  2. Десятичной запятой отделяем столько цифр справа, сколько нулей есть в знаменателе исходной обыкновенной дроби.

Ниже приведем пример на использование этого правила.

Пример 3. Перевод обыкновенных дробей в десятичные

Переведем дробь 56888038009 100000 из обыкновенной неправильной в десятичную.

Сначала запишем число из числителя:

Теперь справа отделим десятичной запятой пять цифр (количество нулей в знаменателе - пять). Получим:

Следующий вопрос, который закономерно возникает: как перевести в десятичную дробь смешанное число, если знаменателем его дробной части является число 10, 100, 1000 и т.д. Для обращения в десятичную дробь такого числа можно воспользоваться следующим правилом.

Правило перевода смешанных чисел в десятичные дроби

  1. Выполняем подготовку дробной части числа, если это необходимо.
  2. Записываем целую часть исходного числа и ставим после него запятую.
  3. Записываем число из числителя дробной части вместе с дописанными нулями.

Обратимся к примеру.

Пример 4. Перевод смешанных чисел в десятичные дроби

Переведем смешанное число 23 17 10000 в десятичную дробь.

В дробной части имеем выражение 17 10000 . Выполним его подготовку и допишем слева от числителя еще два нуля. Получим: 0017 10000 .

Теперь записываем целую часть числа и ставим после него запятую: 23 , . .

После запятой записываем число из числителя вместе с нулями. Получаем результат:

23 17 10000 = 23 , 0017

Перевод обыкновенных дробей в конечные и бесконечные периодические дроби

Конечно, можно переводить в десятичные дроби и обыкновенные дроби со знаменателем, не равным 10, 100, 1000 и т.д.

Часто дробь можно легко привести к новому знаменателю, а затем уже воспользоваться правилом, изложенным в первом пункте данной статьи. Например, достаточно умножить числитель и знаменатель дроби 25 на 2, и мы получим дробь 410, которая легко приводится к десятичному виду 0,4.

Однако такой способ перевода обыкновенной дроби в десятичную удается использовать не всегда. Ниже рассмотрим, как поступать, если применить рассмотренный способ невозможно.

Принципиально новый способ обращения обыкновенной дроби в десятичную сводится к делению числителя на знаменатель столбиком. Эта операция очень похожа на деление натуральных чисел столбиком, но имеет свои особенности.

Числитель при делении представляется в виде десятичной дроби - справа от последней цифры числителя ставится запятая и дописываются нули. В получившемся частном десятичная запятая ставится тогда, когда заканчивается деление целой части числителя. Как именно работает этот способ, станет понятно после рассмотрения примеров.

Пример 5. Перевод обыкновенных дробей в десятичные

Переведем обыкновенную дробь 621 4 в десятичный вид.

Представим число 621 из числителя в виде десятичной дроби, добавив после запятой несколько нулей. 621 = 621 , 00

Теперь разделим столбиком 621 , 00 на 4 . Первые три шага деления будут такими же, как при делении натуральных чисел, и мы получим.

Когда мы добрались до десятичной запятой в делимом, а остаток отличен от нуля, ставим в частном десятичную запятую, и продолжаем делить, не обращая более внимания на запятую в делимом.

В итоге мы получаем десятичную дробь 155 , 25 , которая и является результатом обращения обыкновенной дроби 621 4

621 4 = 155 , 25

Рассмотрим решение еще одного примера, чтобы закрепить материал.

Пример 6. Перевод обыкновенных дробей в десятичные

Обратим обыкновенную дробь 21 800 .

Для этого в столбик разделим дробь 21 , 000 на 800 . Деление целой части закончится на первом же шаге, поэтому сразу после него ставим в частном десятичную запятую и продолжаем деление, не обращая внимания на запятую в делимом до того момента, пока не получим остаток, равный нулю.

В результате мы получили: 21 800 = 0 , 02625 .

Но как быть, если при делении мы так и не получим в остатке 0. В таких случаях деление можно продолжать бесконечно долго. Однако, начиная с определенного шага, остатки будут периодически повторяться. Соответственно, будут повторяться и цифры в частном. Это значит, что обыкновенная дробь переводится в десятичную бесконечную периодическую дробь. Проиллюстрируем сказанное на примере.

Пример 7. Перевод обыкновенных дробей в десятичные

Обратим обыкновенную дробь 19 44 в десятичную. Для этого выполним деление столбиком.

Мы видим, что при делении повторяются остатки 8 и 36 . При этом в частном повторяются цифры 1 и 8 . Это и есть период в десятичной дроби. При записи эти цифры берутся в скобки.

Таким образом, исходная обыкновенная дробь переведена в бесконечную периодическую десятичную дробь.

19 44 = 0 , 43 (18) .

Пусть перед нами несократимая обыкновенная дробь. К какому виду она приведется? Какие обыкновенные дроби переводятся в конечные десятичные, а какие - в бесконечные периодические?

Во первых, скажем, что если дробь удается привести к одному из знаменателей 10, 100, 1000.., то она будет иметь вид конечной десятичной дроби. Чтобы дробь приводилась к одному из таких знаменателей, ее знаменатель должен быть делителем хотя бы одного из чисел 10, 100, 1000 и т.д. Из правил разложения чисел на простые множители следует, что делитель чисел 10, 100, 1000 и т.д. должен, при разложении на простые множители, содержать лишь числа 2 и 5.

Подытожим сказанное:

  1. Обыкновенную дробь можно привести к виду конечной десятичной дроби, если ее знаменатель можно разложить на простые множители 2 и 5.
  2. Если кроме чисел 2 и 5 в разложении знаменателя присутствуют другие простые числа, дробь приводится к виду бесконечной периодической десятичной дроби.

Приведем пример.

Пример 8. Перевод обыкновенных дробей в десятичные

Какая из данных дробей 47 20 , 7 12 , 21 56 , 31 17 переводится в конечную десятичную дробь, а какая - только в периодическую. Дадим ответ на этот вопрос, не выполняя непосредственно перевода обыкновенной дроби в десятичную.

Дробь 47 20 , как легко заметить, умножением числителя и знаменателя на 5 приводится к новому знаменателю 100 .

47 20 = 235 100 . Отсюда делаем вывод, что данная дробь переводится в конечную десятичную дробь.

Разложение знаменателя дроби 7 12 на множители дает 12 = 2 · 2 · 3 . Так как простой множитель 3 отличен от 2 и от 5 , данная дробь не может быть представлена в виде конечной десятичной дроби, а будет иметь вид бесконечной периодической дроби.

Дробь 21 56 , во-первых, нужно сократить. После сокращения на 7 получим несократимую дробь 3 8 , разложение знаменателя которой на множители дает 8 = 2 · 2 · 2 . Следовательно, это конечная десятичная дробь.

В случае с дробью 31 17 разложение знаменателя на множители представляет собой само простое число 17 . Соответственно, эту дробь можно обратить в бесконечную периодическую десятичную дробь.

Обыкновенную дробь нельзя перевести в бесконечную и непериодическую десятичную дробь

Выше мы говорили только о конечных и бесконечных периодических дробях. Но может ли какая-либо обыкновенная дробь быть обращена в вид бесконечной непериодической дроби?

Отвечаем: нет!

Важно!

При переводе бесконечной дроби в десятичную получается либо конечная десятичная дробь, либо бесконечная периодическая десятичная дробь.

Остаток от деления всегда меньше делителя. Другими словами, согласно теореме о делимости, если мы делим какое-то натуральное число на число q, то остаток деления в любом случае не может быть больше, чем q-1. После окончания деления возможна одна из следующих ситуаций:

  1. Мы получаем в остатке 0, и на этом деление заканчивается.
  2. Мы получаем остаток, который при последующем делении повторяется, в результате мы имеем бесконечную периодическую дробь.

Иных вариантов при обращении обыкновенной дроби в десятичную не может быть. Скажем также, что длина периода (количество цифр) в бесконечной периодической дроби всегда меньше, чем число цифр в знаменателе соответствующей обыкновенной дроби.

Перевод десятичных дробей в обыкновенные дроби

Теперь пришло время рассмотреть обратный процесс перевода десятичной дроби в обыкновенную. Сформулируем правило перевода, которое включает три этапа. Как перевести десятичную дробь в обыкновенную?

Правило перевода десятичных дробей в обыкновенные дроби

  1. В числитель записываем число из исходной десятичной дроби, отбросив запятую и все нули слева, если они есть.
  2. В знаменатель записываем единицу и за ней столько нулей, сколько цифр есть в исходной десятичной дроби после запятой.
  3. При необходимости сокращаем полученную обыкновенную дробь.

Рассмотрим применение данного правила на примерах.

Пример 8. Перевод десятичных дробей в обыкновенные

Представим число 3 , 025 в виде обыкновенной дроби.

  1. В числитель записываем саму десятичную дробь, отбросив запятую: 3025 .
  2. В знаменателе пишем единицу, а после нее три нуля - именно столько цифр содержится в исходной дроби после запятой: 3025 1000 .
  3. Полученную дробь 3025 1000 можно сократить на 25 , в результате чего мы получим: 3025 1000 = 121 40 .

Пример 9. Перевод десятичных дробей в обыкновенные

Переведем дробь 0 , 0017 из десятичных в обыкновенные.

  1. В числителе запишем дробь 0 , 0017 , отбросив запятую и нули слева. Получится 17 .
  2. В знаменатель записываем единицу, а после нее пишем четыре нуля: 17 10000 . Данная дробь несократима.

Если в десятичной дроби есть целая часть, то такую дробь можно сразу перевести в смешанное число. Как это сделать?

Сформулируем еще одно правило.

Правило перевода десятичных дробей в смешанные числа.

  1. Число, стоящее в дроби до запятой, записываем как целая часть смешанного числа.
  2. В числителе записываем число, стоящее в дроби после запятой, отбросив нули слева, если они есть.
  3. В знаменателе дробной части дописываем единицу и столько нулей, сколько цифр есть в дробной части после запятой.

Обратимся к примеру

Пример 10. Перевод десятичной дроби в смешанное число

Представим дробь 155 , 06005 в виде смешанного числа.

  1. Записываем число 155 , как целую часть.
  2. В числителе записываем цифры после запятой, отбросив нуль.
  3. В знаменателе записываем единицу и пять нулей

Поучаем смешанное число: 155 6005 100000

Дробную часть можно сократить на 5 . Сокращаем, и получаем финальный результат:

155 , 06005 = 155 1201 20000

Перевод бесконечных периодических десятичных дробей в обыкновенные дроби

Разберем на примерах, как осуществлять перевод периодических десятичных дробей в обыкновенные. Прежде чем начать, уточним: любую периодическую десятичную дробь можно перевести в обыкновенную.

Самый простой случай - период дроби равен нулю. Периодическая дробь с нулевым периодом заменяется на конечную десятичную дробь, а процесс обращения такой дроби сводится к обращению конечной десятичной дроби.

Пример 11. Перевод периодической десятичной дроби в обыкновенную

Обратим периодическую дробь 3 , 75 (0) .

Отбросив нули справа, получим конечную десятичную дробь 3 , 75 .

Обращая данную дробь в обыкновенную по алгоритму, разобранному в предыдущих пунктах, получаем:

3 , 75 (0) = 3 , 75 = 375 100 = 15 4 .

Как быть, если период дроби отличен от нуля? Периодическую часть следует рассматривать как сумму членов геометрический прогрессии, которая убывает. Поясним это на примере:

0 , (74) = 0 , 74 + 0 , 0074 + 0 , 000074 + 0 , 00000074 + . .

Для суммы членов бесконечной убывающей геометрической прогрессии существует формула. Если первый член прогрессии равен b , а знаменатель q таков, что 0 < q < 1 , то сумма равна b 1 - q .

Рассмотрим несколько примеров с применением данной формулы.

Пример 12. Перевод периодической десятичной дроби в обыкновенную

Пусть у нас есть периодическая дробь 0 , (8) и нам нужно перевести ее в обыкновенную.

0 , (8) = 0 , 8 + 0 , 08 + 0 , 008 + . .

Здесь мы имеем бесконечную убывающую геометрическую прогрессию с первым членом 0 , 8 и знаменателем 0 , 1 .

Применим формулу:

0 , (8) = 0 , 8 + 0 , 08 + 0 , 008 + . . = 0 , 8 1 - 0 , 1 = 0 , 8 0 , 9 = 8 9

Это и есть искомая обыкновенная дробь.

Для закрепления материала рассмотрим еще один пример.

Пример 13. Перевод периодической десятичной дроби в обыкновенную

Обратим дробь 0 , 43 (18) .

Сначала записываем дробь в виде бесконечной суммы:

0 , 43 (18) = 0 , 43 + (0 , 0018 + 0 , 000018 + 0 , 00000018 . .)

Рассмотрим слагаемые в скобках. Эту геометрическую прогрессию можно представить в следующем виде:

0 , 0018 + 0 , 000018 + 0 , 00000018 . . = 0 , 0018 1 - 0 , 01 = 0 , 0018 0 , 99 = 18 9900 .

Полученное прибавляем к конечной дроби 0 , 43 = 43 100 и получаем результат:

0 , 43 (18) = 43 100 + 18 9900

После сложения данных дробей и сокращения получим окончательный ответ:

0 , 43 (18) = 19 44

В завершение данной статьи скажем, что непериодические бесконечный десятичные дроби нельзя перевести в вид обыкновенных дробей.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Уже в начальной школе учащиеся сталкиваются с дробями. И потом они появляются в каждой теме. Забывать действия с этими числами нельзя. Поэтому нужно знать всю информацию про обыкновенные и десятичные дроби. Понятия эти несложные, главное - разбираться во всем по порядку.

Зачем нужны дроби?

Окружающий нас мир состоит из целых предметов. Поэтому в долях необходимости нет. Зато повседневная жизнь постоянно наталкивает людей на работу с частями предметов и вещей.

Например, шоколад состоит из нескольких долек. Рассмотрим ситуацию, когда его плитка образована двенадцатью прямоугольниками. Если ее разделить на двоих, то получится по 6 частей. Она хорошо разделится и на троих. А вот пятерым не удастся дать по целому числу долек шоколада.

Кстати, эти дольки - уже дроби. А дальнейшее их деление приводит к появлению более сложных чисел.

Что такое «дробь»?

Это число, состоящее из частей единицы. Внешне оно выглядит как два числа, разделенные горизонтальной или наклонной чертой. Эта черта носит название дробной. Число, записанное сверху (слева), называется числителем. То, что стоит снизу (справа), является знаменателем.

По сути, дробная черта оказывается знаком деления. То есть числитель можно назвать делимым, а знаменатель — делителем.

Какие существуют дроби?

В математике их имеется всего два вида: обыкновенные и десятичные дроби. С первыми школьники знакомятся в начальных классах, называя их просто «дроби». Вторые узнают в 5 классе. Именно тогда появляются эти названия.

Обыкновенные дроби — все те, что записываются в виде двух чисел, разделенных чертой. Например, 4/7. Десятичная — это число, в котором дробная часть имеет позиционную запись и отделяется от целой при помощи запятой. К примеру, 4,7. Учащимся нужно четко уяснить, что два приведенных примера — это совершенно разные числа.

Каждую простую дробь можно записать в виде десятичной. Это утверждение почти всегда верно и в обратном направлении. Существуют правила, которые позволяют записать обыкновенной дробью десятичную дробь.

Какие подвиды имеют указанные виды дробей?

Начать лучше в хронологическом порядке, так как они изучаются. Первыми идут обыкновенные дроби. Среди них можно выделить 5 подвидов.

    Правильная. Ее числитель всегда меньше знаменателя.

    Неправильная. У нее числитель больше или равен знаменателю.

    Сократимая/несократимая. Она может оказаться как правильной, так и неправильной. Важно другое, есть ли у числителя со знаменателем общие множители. Если имеются, то на них полагается разделить обе части дроби, то есть сократить ее.

    Смешанная. К ее привычной правильной (неправильной) дробной части приписывается целое число. Причем оно всегда стоит слева.

    Составная. Она образуется из двух разделенных друг на друга дробей. То есть в ней насчитывается сразу три дробные черты.

У десятичных дробей есть всего два подвида:

    конечная, то есть та, у которой дробная часть ограничена (имеет конец);

    бесконечная — число, у которого цифры после запятой не заканчиваются (их можно писать бесконечно).

Как переводить десятичную дробь в обыкновенную?

Если это конечное число, то применяется ассоциация, основанная на правиле — как слышу, так пишу. То есть нужно правильно прочитать ее и записать, но уже без запятой, а с дробной чертой.

В качестве подсказки о необходимом знаменателе, нужно запомнить, что он всегда единица и несколько нулей. Последних нужно написать столько, сколько цифр в дробной части рассматриваемого числа.

Как перевести десятичные дроби в обыкновенные, если их целая часть отсутствует, то есть равна нулю? Например, 0,9 или 0,05. После применения указанного правила, получается, что нужно написать ноль целых. Но оно не указывается. Остается записать только дробные части. У первого числа знаменатель будет равен 10, у второго — 100. То есть указанные примеры ответами будут иметь числа: 9/10, 5/100. Причем последнее оказывается можно сократить на 5. Поэтому результатом для нее нужно записать 1/20.

Как из десятичной дроби сделать обыкновенную, если ее целая часть отлична от нуля? Например, 5,23 или 13,00108. В обоих примерах читается целая часть и записывается ее значение. В первом случае это — 5, во втором — 13. Потом нужно переходить к дробной части. С ними полагается провести ту же операцию. У первого числа появляется 23/100, у второго — 108/100000. Второе значение снова нужно сократить. В ответе получаются такие смешанные дроби: 5 23/100 и 13 27/25000.

Как перевести бесконечную десятичную дробь в обыкновенную?

Если она является непериодической, то такую операцию провести не удастся. Этот факт связан с тем, что каждая десятичная дробь всегда переводится или в конечную или в периодическую.

Единственное, что допускается делать с такой дробью, — это округлять ее. Но тогда десятичная будет приблизительно равно той бесконечной. Ее уже можно превратить в обыкновенную. Но обратный процесс: перевод в десятичную — никогда не даст начального значения. То есть бесконечные непериодические дроби в обыкновенные не переводятся. Это нужно запомнить.

Как записать бесконечную периодическую дробь в виде обыкновенной?

В этих числах после запятой всегда появляются одна или несколько цифр, которые повторяются. Их называют периодом. Например, 0,3(3). Здесь «3» в периоде. Их относят к классу рациональных, так как могут быть преобразованы в обыкновенные дроби.

Тем, кто встречался с периодическими дробями, известно, что они могут быть чистыми или смешанными. В первом случае период начинается сразу от запятой. Во втором — дробная часть начинается с каких-либо цифр, а потом начинается повтор.

Правило, по которому нужно записать в виде обыкновенной дроби бесконечную десятичную, будет разным для указанных двух видов чисел. Чистые периодические дроби записать обыкновенными достаточно просто. Как с конечными, их нужно преобразовать: в числитель записать период, а знаменателем будет цифра 9, повторяющаяся столько раз, сколько цифр содержит период.

Например, 0,(5). Целой части у числа нет, поэтому сразу нужно приступать к дробной. В числитель записать 5, а в знаменатель одну 9. То есть ответом будет дробь 5/9.

Правило о том, как записать обыкновенной десятичную периодическую дробь, являющуюся смешанной.

    Посмотреть на длину периода. Столько 9 будет иметь знаменатель.

    Записать знаменатель: сначала девятки, потом нули.

    Чтобы определить числитель, нужно записать разность двух чисел. Уменьшаемым будут все цифры после запятой, вместе с периодом. Вычитаемым — оно же без периода.

Например, 0,5(8) - запишите периодическую десятичную дробь в виде обыкновенной. В дробной части до периода стоит одна цифра. Значит ноль будет один. В периоде тоже только одна цифра — 8. То есть девятка одна. То есть в знаменателе нужно написать 90.

Для определения числителя из 58 нужно вычесть 5. Получается 53. Ответом к примеру придется записать 53/90.

Как переводятся обыкновенные дроби в десятичные?

Самым простым вариантом оказывается число, в знаменателе которого стоит число 10, 100 и прочее. Тогда знаменатель просто отбрасывается, а между дробной и целой частями ставится запятая.

Бывают ситуации, когда знаменатель легко превращается в 10, 100 и т. д. Например, числа 5, 20, 25. Их достаточно умножить на 2, 5 и 4 соответственно. Только умножать полагается не только знаменатель, но и числитель на то же число.

Для всех остальных случаев пригодится простое правило: разделить числитель на знаменатель. В этом случае может получиться два варианта ответов: конечная или периодическая десятичная дробь.

Действия с обыкновенными дробями

Сложение и вычитание

С ними учащиеся знакомятся раньше других. Причем сначала у дробей одинаковые знаменатели, а потом разные. Общие правила можно свести к такому плану.

    Найти наименьшее общее кратное знаменателей.

    Записать дополнительные множители ко всем обыкновенным дробям.

    Умножить числители и знаменатели на определенные для них множители.

    Сложить (вычесть) числители дробей, а общий знаменатель оставить без изменения.

    Если числитель уменьшаемого меньше вычитаемого, то нужно выяснить, перед нами смешанное число или правильная дробь.

    В первом случае у целой части нужно занять единицу. К числителю дроби прибавить знаменатель. А потом выполнять вычитание.

    Во втором — необходимо применить правило вычитания из меньшего числа большее. То есть из модуля вычитаемого вычесть модуль уменьшаемого, а в ответ поставить знак «-».

    Внимательно посмотреть на результат сложения (вычитания). Если получилась неправильная дробь, то полагается выделить целую часть. То есть разделить числитель на знаменатель.

    Умножение и деление

    Для их выполнения дроби не нужно приводить к общему знаменателю. Это упрощает выполнение действий. Но в них все равно полагается следовать правилам.

      При умножении обыкновенных дробей необходимо рассмотреть числа в числителях и знаменателях. Если какой-либо числитель и знаменатель имеют общий множитель, то их можно сократить.

      Перемножить числители.

      Перемножить знаменатели.

      Если получилась сократимая дробь, то ее полагается снова упростить.

      При делении нужно сначала заменить деление на умножение, а делитель (вторую дробь) — на обратную дробь (поменять местами числитель и знаменатель).

      Потом действовать, как при умножении (начиная с пункта 1).

      В заданиях, где умножить (делить) нужно на целое число, последнее полагается записать в виде неправильной дроби. То есть со знаменателем 1. Потом действовать, как было описано выше.

    Действия с десятичными дробями

    Сложение и вычитание

    Конечно, всегда можно превратить десятичную дробь в обыкновенную. И действовать по уже описанному плану. Но иногда удобнее действовать без этого перевода. Тогда правила для их сложения и вычитания будут совершенно одинаковыми.

      Уравнять число цифр в дробной части числа, то есть после запятой. Приписать в ней недостающее количество нулей.

      Записать дроби так, чтобы запятая оказалась под запятой.

      Сложить (вычесть) как натуральные числа.

      Снести запятую.

    Умножение и деление

    Важно, что здесь не нужно дописывать нули. Дроби полагается оставлять в том виде, как они даны в примере. А дальше идти по плану.

      Для умножения нужно написать дроби одна под другой, не обращая внимание на запятые.

      Умножить, как натуральные числа.

      Поставить в ответе запятую, отсчитав от правого конца ответа столько цифр, сколько их стоит в дробных частях обоих множителей.

      Для деления нужно сначала преобразовать делитель: сделать его натуральным числом. То есть умножить его на 10, 100 и т. д., в зависимости от того, сколько цифр в дробной части делителя.

      На то же число умножить делимое.

      Разделить десятичную дробь на натуральное число.

      Поставить в ответе запятую в тот момент, когда закончится деление целой части.

    Как быть, если в одном примере есть оба вида дробей?

    Да в математике часто встречаются примеры, в которых нужно выполнить действия над обыкновенными и десятичными дробями. В таких заданиях возможны два пути решения. Нужно объективно взвесить числа и выбрать оптимальный.

    Первый путь: представить обыкновенные десятичными

    Он подходит, если при делении или переводе получаются конечные дроби. Если хотя бы одно число дает периодическую часть, то этот прием применять запрещено. Поэтому, даже если не нравится работать с обыкновенными дробями, придется считать их.

    Второй путь: записать десятичные дроби обыкновенными

    Этот прием оказывается удобным, если в части после запятой стоят 1-2 цифры. Если их больше, может получиться очень большая обыкновенная дробь и десятичные записи позволят сосчитать задание быстрее и проще. Поэтому всегда нужно трезво оценивать задание и выбирать самый простой метод решения.

§ 114. Обращение обыкновенной дроби в десятичную.

Обратить обыкновенную дробь в десятичную - это значит найти такую десятичную дробь, которая была бы равна данной обыкновенной дроби. При обращении обыкновенных дробей в десятичные мы встретимся с двумя случаями:

1) когда обыкновенные дроби могут быть обращены в десятичные точно ;

2) когда обыкновенные дроби могут быть обращены в десятичные лишь приближённо . Рассмотрим эти случаи последовательно.

1. Как обратить обыкновенную несократимую дробь в десятичную, или, иными словами, как заменить обыкновенную дробь равной ей десятичной?

В случае, когда обыкновенные дроби могут быть точно обращены в десятичные, существует два способа такого обращения.

Вспомним, как заменить одну дробь другой, равной первой, или как перейти от одной дроби к другой, не изменяя величины первой. Этим мы занимались, когда приводили дроби к общему знаменателю (§86). Когда мы приводим дроби к общему знаменателю, то поступаем следующим образом: находим общий знаменатель для данных дробей, вычисляем для каждой дроби дополнительный множитель и потом умножаем числитель и знаменатель каждой дроби на этот множитель.

Заметив это, возьмём несократимую дробь 3 / 20 и попробуем обратить её в десятичную. Знаменатель данной дроби равен 20, а нужно привести её к другому знаменателю, который изображался бы единицей с нулями. Мы будем искать наименьший из знаменателей, выражающихся единицей с последующими нулями.

Первый способ обращения обыкновенной дроби в десятичную основан на разложении знаменателя на простые множители.

Необходимо узнать, на какое число следует умножить 20, чтобы произведение выразилось единицей с нулями. Чтобы это узнать, нужно сначала вспомнить, на какие простые множители разлагаются числа, изображаемые единицей с нулями. Вот эти разложения:

10 = 2 5,
100 = 2 2 5 . 5,
1 000 = 2 2 2 5 5 5,
10 000 = 2 2 2 2 5 5 5 5.

Мы видим, что число, изображаемое единицей с нулями, разлагается только на двойки и пятёрки, а иных множителей в разложении нет. Кроме того, двойки и пятёрки входят в разложение в одинаковом числе. И, наконец, число тех и других множителей в отдельности равно числу нулей, стоящих после единицы в изображении данного числа.

Посмотрим теперь, как разлагается 20 на простые множители: 20 = 2 2 5. Из этого видно, что двоек в разложении числа 20 две, а пятёрок одна. Значит, если к этим множителям мы добавим одну пятёрку, то получим число, изображаемое единицей с нулями. Иными словами, для того, чтобы в знаменателе вместо числа 20 получилось число, изображаемое единицей с нулями, нужно 20 умножить на 5, а чтобы величина дроби не изменилась, нужно умножить на 5 и её числитель, т. е.

Таким образом, чтобы обратить обыкновенную дробь в десятичную, нужно знаменатель этой обыкновенной дроби разложить на простые множители и затем уравнять в нём число двоек и пятёрок, введя в него (и, конечно, в числитель) недостающие множители в необходимом числе.

Применим этот вывод к некоторым дробям.

Обратить в десятичную дробь 3 / 50 . Знаменатель этой дроби разлагается так:

значит, в нём недостаёт одной двойки. Добавим её:

Обратить в десятичную дробь 7 / 40 .

Знаменатель этой дроби разлагается так: 40 = 2 2 2 5, т. е. в нём недостаёт двух пятёрок. Введём их в числитель и знаменатель в качестве множителей:

Из того, что изложено, нетрудно сделать вывод, какие обыкновенные дроби обращаются точно в десятичные. Совершенно очевидно, что несократимая обыкновенная дробь, знаменатель которой не содержит никаких иных простых множителей, кроме 2 и 5, обращается точно в десятичную. Десятичная дробь, которая получается от обращения некоторой обыкновенной, будет иметь столько десятичных знаков, сколько раз в состав знаменателя обыкновенной дроби после её сокращения входит численно преобладающий множитель 2 или 5.

Если мы возьмём дробь 9 / 40 , то, во-первых, она обратится в десятичную, потому что в состав её знаменателя входят множители 2 2 2 5, во-вторых, полученная десятичная дробь будет иметь 3 десятичных знака, потому что численно преобладающий множитель 2 входит в разложение три раза. В самом деле:

Второй способ (посредством деления числителя на знаменатель).

Пусть требуется обратить в десятичную дробь 3 / 4 . Мы знаем, что 3 / 4 есть частное от деления 3 на 4. Это частное мы можем найти, разделив 3 на 4. Сделаем это:

Таким образом, 3 / 4 = 0,75.

Ещё пример: обратить в десятичную дробь 5 / 8 .

Таким образом, 5 / 8 = 0,625.

Итак, чтобы обратить обыкновенную дробь в десятичную, достаточно разделить числитель обыкновенной дроби на её знаменатель.

2. Рассмотрим теперь второй из указанных в начале параграфа случаев, т. е. тот случай, когда обыкновенная дробь не может быть обращена в точную десятичную.

Обыкновенная несократимая дробь, знаменатель которой содержит какие-либо простые множители, отличные от 2 и 5, не может обратиться точно в десятичную. В самом деле, например, дробь 8 / 15 не может обратиться в десятичную, так как её знаменатель 15 разлагается на два множителя: 3 и 5.

Мы не можем исключить тройку из знаменателя и не можем подобрать такого целого числа, чтобы после умножения на него данного знаменателя произведение выразилось единицей с нулями.

В таких случаях можно говорить только о приближённом обращении обыкновенных дробей в десятичные.

Как это делается? Это делается посредством деления числителя обыкновенной дроби на знаменатель, т. е. в этом случае применяют второй способ обращения обыкновенной дроби в десятичную. Значит, этот способ применяется и при точном обращении и при приближённом.

Если обыкновенная дробь обращается точно в десятичную, то от деления получается конечная десятичная дробь.

Если обыкновенная дробь не обращается в точную десятичную, то от деления получается бесконечная десятичная дробь.

Так как мы не можем выполнить бесконечного процесса деления, то мы должны прекратить деление на каком-нибудь десятичном знаке, т. е. сделать приближённое деление. Мы можем, например, прекратить деление на первом десятичном знаке, т. е. ограничиться десятыми долями; в случае надобности мы можем остановиться на втором десятичном знаке, получив сотые доли, и т. д. В этих случаях говорят, что мы округляем бесконечную десятичную дробь. Округление делается с той точностью, какая при решении данной задачи необходима.

§ 115. Понятие о периодической дроби.

Бесконечная десятичная дробь, у которой одна или несколько цифр неизменно повторяются в одной и той же последовательности, называется периодической десятичной дробью. Например:

0,33333333...; 1,12121212...; 3,234234234...

Совокупность повторяющихся цифр называется периодом этой дроби. Период первой из написанных выше дробей есть 3, период второй дроби 12, период третьей дроби 234. Значит, период может состоять из нескольких цифр - из одной, из двух, из трёх и т. д. Первая совокупность повторяющихся цифр называется первым периодом, вторая совокупность - вторым периодом и т. д., т. е.

Периодические дроби бывают чистые и смешанные. Периодическая дробь называется чистой, если её период начинается тотчас после запятой. Значит, написанные выше периодические дроби будут чистыми. Напротив, периодическая дробь называется смешанной, если у неё между запятой и первым периодом имеется одна или несколько неповторяющихся цифр, например:

2,5333333...; 4,1232323232...; 0,2345345345345... 160

Для сокращения письма можно цифры периода писать один раз в скобках и не ставить после скобок многоточия, т. е. вместо 0,33... можно писать 0,(3); вместо 2,515151... можно писать 2,(51); вместо 0,2333... можно писать 0,2(3); вместо 0,8333... можно писать 0,8(3).

Читаются периодические дроби так:

0,(3) - 0 целых, 3 в периоде.

7,2(3) - 7 целых, 2 до периода, 3 в периоде.

5,00(17) - 5 целых, два нуля до периода, 17 в периоде.

Как возникают периодические дроби? Мы уже видели, что при обращении обыкновенных дробей в десятичные может быть два случая.

Во-первых , знаменатель обыкновенной несократимой дроби не содержит никаких иных множителей, кроме 2 и 5; в этом случае обыкновенная дробь обращается в конечную десятичную.

Во-вторых, знаменатель обыкновенной несократимой дроби содержит в себе какие-либо простые множители, отличные от 2 и 5; в этом случае обыкновенная дробь не обращается в конечную десятичную. В этом последнем случае при попытке обратить обыкновенную дробь в десятичную посредством деления числителя на знаменатель получается бесконечная дробь, которая всегда будет периодической.

Чтобы в этом убедиться, рассмотрим какой-нибудь пример. Попробуем обратить дробь- 18 / 7 в десятичную.

Мы, конечно, заранее знаем, что дробь с таким знаменателем не может обратиться в конечную десятичную, и ведём речь только о приближённом обращении. Разделим числитель 18 на знаменатель 7.

Мы получили в частном восемь десятичных знаков. Нет надобности продолжать деление дальше, потому что оно всё равно не окончится. Но отсюда понятно, что деление можно продолжать бесконечно долго и, таким образом, получать в частном новые цифры. Эти новые цифры будут возникать потому, что у нас всё время будут получаться остатки; но никакой остаток не может быть больше делителя, который у нас равен 7.

Посмотрим, какие у нас были остатки: 4; 5; 1; 3; 2; б, т. е. это были числа, меньшие 7. Очевидно, их не может быть больше шести, и при дальнейшем продолжении деления они должны будут повторяться, а вслед за ними будут повторяться и цифры частного. Приведённый выше пример подтверждает эту мысль: десятичные знаки в частном идут в таком порядке: 571428, а после этого снова появились цифры 57. Значит, у нас окончился первый период и начинается второй.

Таким образом, бесконечная десятичная дробь, получающаяся при обращении обыкновенной дроби, всегда будет периодической.

Если периодическая дробь встречается при решении какой-нибудь задачи, то она берётся с той точностью, какая требуется условием задачи (до десятой, до сотой, до тысячной и т. д.).

§ 116. Совместные действия с обыкновенными и десятичными дробями.

При решении различных задач мы встретимся с такими случаями, когда в задачу входят и обыкновенные, и десятичные дроби.

В этих случаях можно идти различными путями.

1. Обратить все дроби в десятичные. Это удобно потому, что вычисления над десятичными дробями легче, чем над обыкновенными. Например,

Обратим дроби 3 / 4 и 1 1 / 5 в десятичные:

2. Обратить все дроби в обыкновенные. Так чаще всего поступают в тех случаях, когда встречаются обыкновенные дроби, не обращающиеся в конечные десятичные.

Например,

Обратим десятичные дроби в обыкновенные:

3. Вычисления ведут без обращения одних дробей в другие.

Это особенно удобно в тех случаях, когда в пример входят только умножение и деление. Например,

Перепишем пример так:

4. В некоторых случаях обращают все обыкновенные дроби в десятичные (даже те, которые обращаются в периодические) и находят приближённый результат. Например,

Обратим 2 / 3 в десятичную дробь, ограничившись тысячными долями.